Restriction to Levi subalgebras and generalization of the category
- [1] Institut de Recherche Mathématique Avancée Université de Strasbourg 7 rue René Descartes 67084 Strasbourg
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 1, page 37-88
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTomasini, Guillaume. "Restriction to Levi subalgebras and generalization of the category $\mathcal{O}$." Annales de l’institut Fourier 63.1 (2013): 37-88. <http://eudml.org/doc/275672>.
@article{Tomasini2013,
abstract = {The category of all modules over a reductive complex Lie algebra is wild, and therefore it is useful to study full subcategories. For instance, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this paper, we define a family of categories which generalizes the BGG category, and we classify the simple modules for a subfamily. As a consequence, we show that some of the obtained categories are semisimple.},
affiliation = {Institut de Recherche Mathématique Avancée Université de Strasbourg 7 rue René Descartes 67084 Strasbourg},
author = {Tomasini, Guillaume},
journal = {Annales de l’institut Fourier},
keywords = {weight modules; cuspidal modules; branching rules},
language = {eng},
number = {1},
pages = {37-88},
publisher = {Association des Annales de l’institut Fourier},
title = {Restriction to Levi subalgebras and generalization of the category $\mathcal\{O\}$},
url = {http://eudml.org/doc/275672},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Tomasini, Guillaume
TI - Restriction to Levi subalgebras and generalization of the category $\mathcal{O}$
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 1
SP - 37
EP - 88
AB - The category of all modules over a reductive complex Lie algebra is wild, and therefore it is useful to study full subcategories. For instance, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this paper, we define a family of categories which generalizes the BGG category, and we classify the simple modules for a subfamily. As a consequence, we show that some of the obtained categories are semisimple.
LA - eng
KW - weight modules; cuspidal modules; branching rules
UR - http://eudml.org/doc/275672
ER -
References
top- G. Benkart, D. Britten, F. Lemire, Modules with bounded weight multiplicities for simple Lie algebras, Math. Z. 225 (1997), 333-353 Zbl0884.17004MR1464935
- I. N. Bernšteĭn, I. M. Gel’fand, S. I. Gel’fand, Differential operators on the base affine space and a study of -modules, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) (1975), 21-64, Halsted, New York Zbl0338.58019MR578996
- I. N. Bernšteĭn, I. M. Gel’fand, S. I. Gel’fand, A certain category of -modules, Funkcional. Anal. i Priložen 10 (1976), 1-8 Zbl0246.17008
- N. Bourbaki, Éléments de mathématique, (1981), Masson, Paris Zbl0498.12001MR643362
- D. Britten, O. Khomenko, F. Lemire, V. Mazorchuk, Complete reducibility of torsion free -modules of finite degree, J. Algebra 276 (2004), 129-142 Zbl1127.17005MR2054390
- D. Britten, F. Lemire, A classification of simple Lie modules having a -dimensional weight space, Trans. Amer. Math. Soc. 299 (1987), 683-697 Zbl0635.17002MR869228
- A. Coleman, V. Futorny, Stratified -modules, J. Algebra 163 (1994), 219-234 Zbl0817.17009MR1257315
- Y. Drozd, V. Futorny, S. Ovsienko, Harish-Chandra subalgebras and Gel’fand-Zetlin modules, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) 424 (1994), 79-93, Kluwer Acad. Publ., Dordrecht Zbl0812.17007MR1308982
- S. Fernando, Lie algebra modules with finite-dimensional weight spaces. I, Trans. Amer. Math. Soc. 322 (1990), 757-781 Zbl0712.17005MR1013330
- V. Futorny, The weight representations of semisimple finite dimensional Lie algebras, (1987)
- V. Futorny, A. Molev, S. Ovsienko, The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite -algebras, Adv. Math. 223 (2010), 773-796 Zbl1268.17012MR2565549
- D. Grantcharov, V. Serganova, Category of -modules with bounded weight multiplicities, Mosc. Math. J. 6 (2006), 119-134 Zbl1127.17006MR2265951
- D. Grantcharov, V. Serganova, Cuspidal representations of , Adv. Math. 224 (2010), 1517-1547 Zbl1210.17011MR2646303
- R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570 Zbl0674.15021MR986027
- R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), 535-552 Zbl0716.22006MR985172
- J. Humphreys, Introduction to Lie algebras and representation theory, 9 (1978), Springer-Verlag, New York Zbl0447.17001MR499562
- J. Humphreys, Representations of semisimple Lie algebras in the BGG category , 94 (2008), American Mathematical Society, Providence, RI Zbl1177.17001MR2428237
- F. Lemire, Irreducible representations of a simple Lie algebra admitting a one-dimensional weight space, Proc. Amer. Math. Soc. 19 (1968), 1161-1164 Zbl0167.03301MR231872
- J. S. Li, The correspondences of infinitesimal characters for reductive dual pairs in simple Lie groups, Duke Math. J. 97 (1999), 347-377 Zbl0949.22017MR1682229
- J. S. Li, Minimal representations & reductive dual pairs, Representation theory of Lie groups (Park City, UT, 1998) 8 (2000), 293-340, Amer. Math. Soc., Providence, RI Zbl0947.22009MR1737731
- O. Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble) 50 (2000), 537-592 Zbl0962.17002MR1775361
- V. Mazorchuk, Generalized Verma modules, 8 (2000), VNTL Publishers, L ′ viv Zbl0980.17005MR1844621
- V. Mazorchuk, Lectures on -modules, (2010), Imperial College Press Zbl1257.17001MR2567743
- V. Mazorchuk, C. Stroppel, Blocks of the category of cuspidal -modules, Pac. J. Math. 251 (2011), 183-196 Zbl1257.17011MR2794619
- V. Mazorchuk, C. Stroppel, Cuspidal -modules and deformations of certain Brauer tree algebras, Adv. Math. 228 (2011), 1008-1042 Zbl1241.17009MR2822216
- I. Penkov, V. Serganova, Generalized Harish-Chandra modules, Mosc. Math. J. 2 (2002), 753-767 Zbl1036.17005MR1986089
- I. Penkov, G. Zuckerman, Generalized Harish-Chandra modules: a new direction in the structure theory of representations, Acta Appl. Math. 81 (2004), 311-326 Zbl1082.17006MR2069343
- T. Przebinda, The duality correspondence of infinitesimal characters, Colloq. Math. 70 (1996), 93-102 Zbl0854.22017MR1373285
- S. Rallis, G. Schiffmann, The orbit and correspondence for some dual pairs, J. Math. Kyoto Univ. 35 (1995), 423-493 Zbl0848.22023MR1359007
- A. Rocha-Caridi, Splitting criteria for -modules induced from a parabolic and the Berňsteĭ n-Gelfand-Gelfand resolution of a finite-dimensional, irreducible -module, Trans. Amer. Math. Soc. 262 (1980), 335-366 Zbl0449.17008MR586721
- C. Stroppel, Category : quivers and endomorphism rings of projectives, Represent. Theory 7 (2003), 322-345 (electronic) Zbl1050.17005MR2017061
- G. Tomasini, Étude de certaines catégories de modules de poids et de leurs restrictions à des paires duales, (2010) Zbl1216.17007MR2682927
- G. Tomasini, On a generalisation of Bernstein-Gelfand-Gelfand category , Comptes rendus - Mathematique 348 (2010), 509-512 Zbl1188.17006MR2645162
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.