Restriction to Levi subalgebras and generalization of the category 𝒪

Guillaume Tomasini[1]

  • [1] Institut de Recherche Mathématique Avancée Université de Strasbourg 7 rue René Descartes 67084 Strasbourg

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 1, page 37-88
  • ISSN: 0373-0956

Abstract

top
The category of all modules over a reductive complex Lie algebra is wild, and therefore it is useful to study full subcategories. For instance, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this paper, we define a family of categories which generalizes the BGG category, and we classify the simple modules for a subfamily. As a consequence, we show that some of the obtained categories are semisimple.

How to cite

top

Tomasini, Guillaume. "Restriction to Levi subalgebras and generalization of the category $\mathcal{O}$." Annales de l’institut Fourier 63.1 (2013): 37-88. <http://eudml.org/doc/275672>.

@article{Tomasini2013,
abstract = {The category of all modules over a reductive complex Lie algebra is wild, and therefore it is useful to study full subcategories. For instance, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this paper, we define a family of categories which generalizes the BGG category, and we classify the simple modules for a subfamily. As a consequence, we show that some of the obtained categories are semisimple.},
affiliation = {Institut de Recherche Mathématique Avancée Université de Strasbourg 7 rue René Descartes 67084 Strasbourg},
author = {Tomasini, Guillaume},
journal = {Annales de l’institut Fourier},
keywords = {weight modules; cuspidal modules; branching rules},
language = {eng},
number = {1},
pages = {37-88},
publisher = {Association des Annales de l’institut Fourier},
title = {Restriction to Levi subalgebras and generalization of the category $\mathcal\{O\}$},
url = {http://eudml.org/doc/275672},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Tomasini, Guillaume
TI - Restriction to Levi subalgebras and generalization of the category $\mathcal{O}$
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 1
SP - 37
EP - 88
AB - The category of all modules over a reductive complex Lie algebra is wild, and therefore it is useful to study full subcategories. For instance, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this paper, we define a family of categories which generalizes the BGG category, and we classify the simple modules for a subfamily. As a consequence, we show that some of the obtained categories are semisimple.
LA - eng
KW - weight modules; cuspidal modules; branching rules
UR - http://eudml.org/doc/275672
ER -

References

top
  1. G. Benkart, D. Britten, F. Lemire, Modules with bounded weight multiplicities for simple Lie algebras, Math. Z. 225 (1997), 333-353 Zbl0884.17004MR1464935
  2. I. N. Bernšteĭn, I. M. Gel’fand, S. I. Gel’fand, Differential operators on the base affine space and a study of 𝔤 -modules, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) (1975), 21-64, Halsted, New York Zbl0338.58019MR578996
  3. I. N. Bernšteĭn, I. M. Gel’fand, S. I. Gel’fand, A certain category of 𝔤 -modules, Funkcional. Anal. i Priložen 10 (1976), 1-8 Zbl0246.17008
  4. N. Bourbaki, Éléments de mathématique, (1981), Masson, Paris Zbl0498.12001MR643362
  5. D. Britten, O. Khomenko, F. Lemire, V. Mazorchuk, Complete reducibility of torsion free C n -modules of finite degree, J. Algebra 276 (2004), 129-142 Zbl1127.17005MR2054390
  6. D. Britten, F. Lemire, A classification of simple Lie modules having a 1 -dimensional weight space, Trans. Amer. Math. Soc. 299 (1987), 683-697 Zbl0635.17002MR869228
  7. A. Coleman, V. Futorny, Stratified L -modules, J. Algebra 163 (1994), 219-234 Zbl0817.17009MR1257315
  8. Y. Drozd, V. Futorny, S. Ovsienko, Harish-Chandra subalgebras and Gel’fand-Zetlin modules, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) 424 (1994), 79-93, Kluwer Acad. Publ., Dordrecht Zbl0812.17007MR1308982
  9. S. Fernando, Lie algebra modules with finite-dimensional weight spaces. I, Trans. Amer. Math. Soc. 322 (1990), 757-781 Zbl0712.17005MR1013330
  10. V. Futorny, The weight representations of semisimple finite dimensional Lie algebras, (1987) 
  11. V. Futorny, A. Molev, S. Ovsienko, The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite W -algebras, Adv. Math. 223 (2010), 773-796 Zbl1268.17012MR2565549
  12. D. Grantcharov, V. Serganova, Category of 𝔰𝔭 ( 2 n ) -modules with bounded weight multiplicities, Mosc. Math. J. 6 (2006), 119-134 Zbl1127.17006MR2265951
  13. D. Grantcharov, V. Serganova, Cuspidal representations of 𝔰𝔩 ( n + 1 ) , Adv. Math. 224 (2010), 1517-1547 Zbl1210.17011MR2646303
  14. R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570 Zbl0674.15021MR986027
  15. R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), 535-552 Zbl0716.22006MR985172
  16. J. Humphreys, Introduction to Lie algebras and representation theory, 9 (1978), Springer-Verlag, New York Zbl0447.17001MR499562
  17. J. Humphreys, Representations of semisimple Lie algebras in the BGG category 𝒪 , 94 (2008), American Mathematical Society, Providence, RI Zbl1177.17001MR2428237
  18. F. Lemire, Irreducible representations of a simple Lie algebra admitting a one-dimensional weight space, Proc. Amer. Math. Soc. 19 (1968), 1161-1164 Zbl0167.03301MR231872
  19. J. S. Li, The correspondences of infinitesimal characters for reductive dual pairs in simple Lie groups, Duke Math. J. 97 (1999), 347-377 Zbl0949.22017MR1682229
  20. J. S. Li, Minimal representations & reductive dual pairs, Representation theory of Lie groups (Park City, UT, 1998) 8 (2000), 293-340, Amer. Math. Soc., Providence, RI Zbl0947.22009MR1737731
  21. O. Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble) 50 (2000), 537-592 Zbl0962.17002MR1775361
  22. V. Mazorchuk, Generalized Verma modules, 8 (2000), VNTL Publishers, L ′ viv Zbl0980.17005MR1844621
  23. V. Mazorchuk, Lectures on 𝔰𝔩 2 ( ) -modules, (2010), Imperial College Press Zbl1257.17001MR2567743
  24. V. Mazorchuk, C. Stroppel, Blocks of the category of cuspidal 𝔰𝔭 2 n -modules, Pac. J. Math. 251 (2011), 183-196 Zbl1257.17011MR2794619
  25. V. Mazorchuk, C. Stroppel, Cuspidal 𝔰𝔩 n -modules and deformations of certain Brauer tree algebras, Adv. Math. 228 (2011), 1008-1042 Zbl1241.17009MR2822216
  26. I. Penkov, V. Serganova, Generalized Harish-Chandra modules, Mosc. Math. J. 2 (2002), 753-767 Zbl1036.17005MR1986089
  27. I. Penkov, G. Zuckerman, Generalized Harish-Chandra modules: a new direction in the structure theory of representations, Acta Appl. Math. 81 (2004), 311-326 Zbl1082.17006MR2069343
  28. T. Przebinda, The duality correspondence of infinitesimal characters, Colloq. Math. 70 (1996), 93-102 Zbl0854.22017MR1373285
  29. S. Rallis, G. Schiffmann, The orbit and θ correspondence for some dual pairs, J. Math. Kyoto Univ. 35 (1995), 423-493 Zbl0848.22023MR1359007
  30. A. Rocha-Caridi, Splitting criteria for 𝔤 -modules induced from a parabolic and the Berňsteĭ n-Gel fand-Gel fand resolution of a finite-dimensional, irreducible 𝔤 -module, Trans. Amer. Math. Soc. 262 (1980), 335-366 Zbl0449.17008MR586721
  31. C. Stroppel, Category 𝒪 : quivers and endomorphism rings of projectives, Represent. Theory 7 (2003), 322-345 (electronic) Zbl1050.17005MR2017061
  32. G. Tomasini, Étude de certaines catégories de modules de poids et de leurs restrictions à des paires duales, (2010) Zbl1216.17007MR2682927
  33. G. Tomasini, On a generalisation of Bernstein-Gelfand-Gelfand category 𝒪 , Comptes rendus - Mathematique 348 (2010), 509-512 Zbl1188.17006MR2645162

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.