An extension of an inequality due to Stein and Lepingle
Colloquium Mathematicae (1996)
- Volume: 71, Issue: 1, page 55-61
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topWeisz, Ferenc. "An extension of an inequality due to Stein and Lepingle." Colloquium Mathematicae 71.1 (1996): 55-61. <http://eudml.org/doc/210427>.
@article{Weisz1996,
abstract = {Hardy spaces consisting of adapted function sequences and generated by the q-variation and by the conditional q-variation are considered. Their dual spaces are characterized and an inequality due to Stein and Lepingle is extended.},
author = {Weisz, Ferenc},
journal = {Colloquium Mathematicae},
keywords = {BMO spaces; Hardy spaces; conditional -variation; predictable prediction},
language = {eng},
number = {1},
pages = {55-61},
title = {An extension of an inequality due to Stein and Lepingle},
url = {http://eudml.org/doc/210427},
volume = {71},
year = {1996},
}
TY - JOUR
AU - Weisz, Ferenc
TI - An extension of an inequality due to Stein and Lepingle
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 1
SP - 55
EP - 61
AB - Hardy spaces consisting of adapted function sequences and generated by the q-variation and by the conditional q-variation are considered. Their dual spaces are characterized and an inequality due to Stein and Lepingle is extended.
LA - eng
KW - BMO spaces; Hardy spaces; conditional -variation; predictable prediction
UR - http://eudml.org/doc/210427
ER -
References
top- [1] N. Asmar and S. Montgomery-Smith, Littlewood-Paley theory on solenoids, Colloq. Math. 65 (1993), 69-82.
- [2] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42. Zbl0301.60035
- [3] C. Dellacherie and P.-A. Meyer, Probabilities and Potential B, North-Holland Math. Stud. 72, North-Holland, 1982.
- [4] A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, Math. Lecture Notes Ser., Benjamin, New York, 1973.
- [5] C. Herz, Bounded mean oscillation and regulated martingales, Trans. Amer. Math. Soc. 193 (1974), 199-215. Zbl0321.60041
- [6] C. Herz, -spaces of martingales, 0 < p ≤ 1, Z. Wahrsch. Verw. Gebiete 28 (1974), 189-205. Zbl0269.60040
- [7] D. Lepingle, Quelques inégalités concernant les martingales, Studia Math. 59 (1976), 63-83. Zbl0413.60046
- [8] D. Lepingle, Une inégalite de martingales, in: Séminaire de Probabilités XII, Lecture Notes in Math. 649, Springer, Berlin, 1978, 134-137.
- [9] E. M. Stein, Topics in Harmonic Analysis, Princeton Univ. Press, 1970. Zbl0193.10502
- [10] F. Weisz, Duality results and inequalities with respect to Hardy spaces containing function sequences, J. Theor. Probab. 9 (1996), 301-316. Zbl0876.60024
- [11] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. Zbl0796.60049
- [12] F. Weisz, Martingale operators and Hardy spaces generated by them, Studia Math. 114 (1995), 39-70. Zbl0822.60043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.