Martingale operators and Hardy spaces generated by them
Studia Mathematica (1995)
- Volume: 114, Issue: 1, page 39-70
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topWeisz, Ferenc. "Martingale operators and Hardy spaces generated by them." Studia Mathematica 114.1 (1995): 39-70. <http://eudml.org/doc/216179>.
@article{Weisz1995,
abstract = {Martingale Hardy spaces and BMO spaces generated by an operator T are investigated. An atomic decomposition of the space $H_\{p\}^\{T\}$ is given if the operator T is predictable. We generalize the John-Nirenberg theorem, namely, we prove that the $BMO_q$ spaces generated by an operator T are all equivalent. The sharp operator is also considered and it is verified that the $L_p$ norm of the sharp operator is equivalent to the $H_\{p\}^\{T\}$ norm. The interpolation spaces between the Hardy and BMO spaces are identified by the real method. Martingale inequalities between Hardy spaces generated by two different operators are considered. In particular, we obtain inequalities for the maximal function, for the q-variation and for the conditional q-variation. The duals of the Hardy spaces generated by these special operators are characterized.},
author = {Weisz, Ferenc},
journal = {Studia Mathematica},
keywords = {martingale operators; martingale Hardy spaces; BMO spaces; interpolation spaces; martingale inequalities; duals of the Hardy spaces; special operators},
language = {eng},
number = {1},
pages = {39-70},
title = {Martingale operators and Hardy spaces generated by them},
url = {http://eudml.org/doc/216179},
volume = {114},
year = {1995},
}
TY - JOUR
AU - Weisz, Ferenc
TI - Martingale operators and Hardy spaces generated by them
JO - Studia Mathematica
PY - 1995
VL - 114
IS - 1
SP - 39
EP - 70
AB - Martingale Hardy spaces and BMO spaces generated by an operator T are investigated. An atomic decomposition of the space $H_{p}^{T}$ is given if the operator T is predictable. We generalize the John-Nirenberg theorem, namely, we prove that the $BMO_q$ spaces generated by an operator T are all equivalent. The sharp operator is also considered and it is verified that the $L_p$ norm of the sharp operator is equivalent to the $H_{p}^{T}$ norm. The interpolation spaces between the Hardy and BMO spaces are identified by the real method. Martingale inequalities between Hardy spaces generated by two different operators are considered. In particular, we obtain inequalities for the maximal function, for the q-variation and for the conditional q-variation. The duals of the Hardy spaces generated by these special operators are characterized.
LA - eng
KW - martingale operators; martingale Hardy spaces; BMO spaces; interpolation spaces; martingale inequalities; duals of the Hardy spaces; special operators
UR - http://eudml.org/doc/216179
ER -
References
top- [1] N. Asmar and S. Montgomery-Smith, Littlewood-Paley theory on solenoids, Colloq. Math. 65 (1993), 69-82.
- [2] N. L. Bassily and J. Mogyoródi, On the -spaces with general Young function, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 27 (1984), 215-227. Zbl0581.60036
- [3] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Appl. Math. 129, Academic Press, New York, 1988. Zbl0647.46057
- [4] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. Zbl0344.46071
- [5] A. Bernard et B. Maisonneuve, Décomposition atomique de martingales de la classe , in: Séminaire de Probabilités XI, Lecture Notes in Math. 581, Springer, Berlin, 1977, 303-323. Zbl0384.60032
- [6] O. Blasco, Interpolation between and , Studia Math. 92 (1989), 205-210.
- [7] O. Blasco and Q. Xu, Interpolation between vector-valued Hardy spaces, J. Funct. Anal. 102 (1991), 331-359. Zbl0759.46066
- [8] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42. Zbl0301.60035
- [9] D. L. Burkholder, B. J. Davis and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, in: Proc. Sixth Berkeley Sympos. Math. Statist. and Probab., Univ. of California Press, 1972, 223-240. Zbl0253.60056
- [10] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249-304. Zbl0223.60021
- [11] L. Chevalier, Démonstration atomique des inégalités de Burkholder-Davis-Gundy, Ann. Sci. Univ. Clermont-Ferrand 67 (1979), 19-24. Zbl0406.60039
- [12] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [13] B. J. Davis, On the integrability of the martingale square function, Israel J. Math. 8 (1970), 187-190. Zbl0211.21902
- [14] C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. Zbl0285.41006
- [15] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-194. Zbl0257.46078
- [16] A. M. Garsia, Martingale Inequalities. Seminar Notes on Recent Progress, Math. Lecture Notes Ser., Benjamin, New York, 1973.
- [17] R. Hanks, Interpolation by the real method between BMO, and (0< α< ∞), Indiana Univ. Math. J. 26 (1977), 679-689.
- [18] C. Herz, Bounded mean oscillation and regulated martingales, Trans. Amer. Math. Soc. 193 (1974), 199-215. Zbl0321.60041
- [19] C. Herz, -spaces of martingales, 0<p ≤ 1, Z. Wahrsch. Verw. Gebiete 28 (1974), 189-205. Zbl0269.60040
- [20] P. Hitczenko, Upper bounds for the -norms of martingales, Probab. Theory Related Fields 86 (1990), 225-238. Zbl0677.60017
- [21] S. Janson and P. Jones, Interpolation between spaces: the complex method, J. Funct. Anal. 48 (1982), 58-80. Zbl0507.46047
- [22] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. Zbl0102.04302
- [23] D. Lepingle, La variation d'ordre p des semi-martingales, Z. Wahrsch. Verw. Gebiete 36 (1976), 295-316. Zbl0325.60047
- [24] D. Lepingle, Quelques inégalités concernant les martingales, Studia Math. 59 (1976), 63-83. Zbl0413.60046
- [25] M. Milman, On interpolation of martingale spaces, Indiana Univ. Math. J. 30 (1981), 313-318. Zbl0501.46066
- [26] J. Neveu, Discrete-Parameter Martingales, North-Holland, 1971.
- [27] G. Pisier and Q. Xu, The strong p-variation of martingales and orthogonal series, Probab. Theory Related Fields 77 (1988), 497-514. Zbl0632.60004
- [28] M. Pratelli, Sur certains espaces de martingales localement de carré intégrable, in: Séminaire de Probabilités X, Lecture Notes in Math. 511, Springer, Berlin, 1976, 401-413.
- [29] N. M. Rivière and Y. Sagher, Interpolation between and the real method, J. Funct. Anal. 14 (1973), 401-409.
- [30] H. P. Rosenthal, On the subspaces of spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303. Zbl0213.19303
- [31] F. Schipp, The dual space of martingale VMO space, in: Proc. Third Pannonian Sympos. Math. Statist., Visegrád, 1982, 305-315.
- [32] E. M. Stein, Topics in Harmonic Analysis, Princeton Univ. Press, 1970. Zbl0193.10502
- [33] J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544. Zbl0429.46016
- [34] F. Weisz, Interpolation between martingale Hardy and BMO spaces, the real method, Bull. Sci. Math. 116 (1992), 145-158. Zbl0776.46018
- [35] F. Weisz, Martingale Hardy spaces for 0<p ≤ 1, Probab. Theory Related Fields 84 (1990), 361-376. Zbl0687.60046
- [36] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. Zbl0796.60049
- [37] T. H. Wolff, A note on interpolation spaces, in: Lecture Notes in Math. 908, Springer, Berlin, 1982, 199-204.
- [38] K. Yosida, Functional Analysis, Springer, Berlin, 1980.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.