Schatten classes and commutators on simple martingales

J. Chao; Lizhong Peng

Colloquium Mathematicae (1996)

  • Volume: 71, Issue: 1, page 7-11
  • ISSN: 0010-1354

How to cite

top

Chao, J., and Peng, Lizhong. "Schatten classes and commutators on simple martingales." Colloquium Mathematicae 71.1 (1996): 7-11. <http://eudml.org/doc/210430>.

@article{Chao1996,
author = {Chao, J., Peng, Lizhong},
journal = {Colloquium Mathematicae},
keywords = {-properties for commutators; singular integral operators; martingale setting},
language = {eng},
number = {1},
pages = {7-11},
title = {Schatten classes and commutators on simple martingales},
url = {http://eudml.org/doc/210430},
volume = {71},
year = {1996},
}

TY - JOUR
AU - Chao, J.
AU - Peng, Lizhong
TI - Schatten classes and commutators on simple martingales
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 1
SP - 7
EP - 11
LA - eng
KW - -properties for commutators; singular integral operators; martingale setting
UR - http://eudml.org/doc/210430
ER -

References

top
  1. [1] J. Bergh and T. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, 1976. Zbl0344.46071
  2. [2] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504. Zbl0306.60030
  3. [3] J.-A. Chao, Conjugate characterizations of H 1 dyadic martingales, Math. Ann. 240 (1979), 63-67. Zbl0403.42016
  4. [4] J.-A. Chao, Hardy spaces and regular martingales, in: Lecture Notes in Math. 939, Springer, 1982, 18-28. 
  5. [5] J.-A. Chao, J. E. Daly and H. Ombe, Factorizations of Hardy spaces of simple martingales, Tamkang J. Math. 19 (4) (1988), 57-65. Zbl0692.60039
  6. [6] J.-A. Chao and S. Janson, A note on H 1 q-martingales, Pacific J. Math. 97 (1981), 307-317. 
  7. [7] J.-A. Chao and R. L. Long, Martingale transforms with unbounded multipliers, Proc. Amer. Math. Soc. 114 (1992), 831-838. Zbl0746.60050
  8. [8] J.-A. Chao and H. Ombe, Commutators on dyadic martingales, Proc. Japan Acad. Ser. A 61 (1985), 35-38. Zbl0596.47024
  9. [9] J.-A. Chao and M. H. Taibleson, A sub-regularity inequality for conjugate systems on local fields, Studia Math. 46 (1973), 249-257. Zbl0258.46046
  10. [10] S. Janson, BMO and commutators of martingale transforms, Ann. Inst. Fourier (Grenoble) 31 (1) (1981), 265-270. Zbl0437.42015
  11. [11] S. Janson, Characterizations of H 1 by singular integral transforms on martingales and n , Math. Scand. 41 (1977), 140-152. Zbl0369.42005
  12. [12] S. Janson and J. Peetre, Higher order commutators of singular integral operators, in: Lecture Notes in Math. 1070, Springer, 1984, 125-142. 
  13. [13] S. Janson and J. Peetre, Paracommutators - boundedness and Schatten-von Neumann properties, Trans. Amer. Math. Soc. 305 (1988), 467-504. Zbl0644.47046
  14. [14] S. Janson and T. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 20 (1982), 301-310. Zbl0508.42022
  15. [15] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Press, Durham, 1976. Zbl0356.46038
  16. [16] V. V. Peller, Hankel operators of class S p and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Math. USSR-Sb. 41 (1982), 443-479. Zbl0478.47015
  17. [17] V. V. Peller, Description of Hankel operators of class S p for p>0, investigation of the rate of rational approximation, and other applications, ibid. 50 (1985), 465-494. Zbl0561.47022
  18. [18] L. Peng, On the compactness of paracommutators, Ark. Mat. 26 (1988), 315-325. Zbl0686.47032
  19. [19] L. Peng, Paracommutators of Schatten-von Neumann class S p , 0<p<1, Math. Scand. 61 (1987), 68-92. Zbl0622.47037
  20. [20] L. Peng, Wavelets and paracommutators, Ark. Mat. 31 (1993), 83-99. Zbl0801.47015
  21. [21] K. Phillips and M. H. Taibleson, Singular integrals in several variables over a local field, Pacific J. Math. 30 (1969), 209-231. Zbl0177.15504
  22. [22] R. Rochberg and S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 237-306. Zbl0699.47012
  23. [23] H. Triebel, Theory of Function Spaces, Birkhäuser, 1985. 
  24. [24] A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J. 30 (1978), 163-171. Zbl0384.47023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.