Schatten classes and commutators on simple martingales

J. Chao; Lizhong Peng

Colloquium Mathematicae (1996)

  • Volume: 71, Issue: 1, page 7-11
  • ISSN: 0010-1354

How to cite

top

Chao, J., and Peng, Lizhong. "Schatten classes and commutators on simple martingales." Colloquium Mathematicae 71.1 (1996): 7-11. <http://eudml.org/doc/210430>.

@article{Chao1996,
author = {Chao, J., Peng, Lizhong},
journal = {Colloquium Mathematicae},
keywords = {-properties for commutators; singular integral operators; martingale setting},
language = {eng},
number = {1},
pages = {7-11},
title = {Schatten classes and commutators on simple martingales},
url = {http://eudml.org/doc/210430},
volume = {71},
year = {1996},
}

TY - JOUR
AU - Chao, J.
AU - Peng, Lizhong
TI - Schatten classes and commutators on simple martingales
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 1
SP - 7
EP - 11
LA - eng
KW - -properties for commutators; singular integral operators; martingale setting
UR - http://eudml.org/doc/210430
ER -

References

top
  1. [1] J. Bergh and T. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, 1976. Zbl0344.46071
  2. [2] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504. Zbl0306.60030
  3. [3] J.-A. Chao, Conjugate characterizations of dyadic martingales, Math. Ann. 240 (1979), 63-67. Zbl0403.42016
  4. [4] J.-A. Chao, Hardy spaces and regular martingales, in: Lecture Notes in Math. 939, Springer, 1982, 18-28. 
  5. [5] J.-A. Chao, J. E. Daly and H. Ombe, Factorizations of Hardy spaces of simple martingales, Tamkang J. Math. 19 (4) (1988), 57-65. Zbl0692.60039
  6. [6] J.-A. Chao and S. Janson, A note on q-martingales, Pacific J. Math. 97 (1981), 307-317. 
  7. [7] J.-A. Chao and R. L. Long, Martingale transforms with unbounded multipliers, Proc. Amer. Math. Soc. 114 (1992), 831-838. Zbl0746.60050
  8. [8] J.-A. Chao and H. Ombe, Commutators on dyadic martingales, Proc. Japan Acad. Ser. A 61 (1985), 35-38. Zbl0596.47024
  9. [9] J.-A. Chao and M. H. Taibleson, A sub-regularity inequality for conjugate systems on local fields, Studia Math. 46 (1973), 249-257. Zbl0258.46046
  10. [10] S. Janson, BMO and commutators of martingale transforms, Ann. Inst. Fourier (Grenoble) 31 (1) (1981), 265-270. Zbl0437.42015
  11. [11] S. Janson, Characterizations of by singular integral transforms on martingales and , Math. Scand. 41 (1977), 140-152. Zbl0369.42005
  12. [12] S. Janson and J. Peetre, Higher order commutators of singular integral operators, in: Lecture Notes in Math. 1070, Springer, 1984, 125-142. 
  13. [13] S. Janson and J. Peetre, Paracommutators - boundedness and Schatten-von Neumann properties, Trans. Amer. Math. Soc. 305 (1988), 467-504. Zbl0644.47046
  14. [14] S. Janson and T. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 20 (1982), 301-310. Zbl0508.42022
  15. [15] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Press, Durham, 1976. Zbl0356.46038
  16. [16] V. V. Peller, Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Math. USSR-Sb. 41 (1982), 443-479. Zbl0478.47015
  17. [17] V. V. Peller, Description of Hankel operators of class for p>0, investigation of the rate of rational approximation, and other applications, ibid. 50 (1985), 465-494. Zbl0561.47022
  18. [18] L. Peng, On the compactness of paracommutators, Ark. Mat. 26 (1988), 315-325. Zbl0686.47032
  19. [19] L. Peng, Paracommutators of Schatten-von Neumann class , 0<p<1, Math. Scand. 61 (1987), 68-92. Zbl0622.47037
  20. [20] L. Peng, Wavelets and paracommutators, Ark. Mat. 31 (1993), 83-99. Zbl0801.47015
  21. [21] K. Phillips and M. H. Taibleson, Singular integrals in several variables over a local field, Pacific J. Math. 30 (1969), 209-231. Zbl0177.15504
  22. [22] R. Rochberg and S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 237-306. Zbl0699.47012
  23. [23] H. Triebel, Theory of Function Spaces, Birkhäuser, 1985. 
  24. [24] A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J. 30 (1978), 163-171. Zbl0384.47023

NotesEmbed ?

top

You must be logged in to post comments.