BMO and commutators of martingale transforms

Svante Janson

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 1, page 265-270
  • ISSN: 0373-0956

Abstract

top
The commutator of multiplication by a function and a martingale transform of a certain type is a bounded operator on L p , 1 < p < , if and only if the function belongs to BMO. This is a martingale version of a result by Coifman, Rochberg and Weiss.

How to cite

top

Janson, Svante. "BMO and commutators of martingale transforms." Annales de l'institut Fourier 31.1 (1981): 265-270. <http://eudml.org/doc/74487>.

@article{Janson1981,
abstract = {The commutator of multiplication by a function and a martingale transform of a certain type is a bounded operator on $L^p$, $1&lt; p&lt; \infty $, if and only if the function belongs to BMO. This is a martingale version of a result by Coifman, Rochberg and Weiss.},
author = {Janson, Svante},
journal = {Annales de l'institut Fourier},
keywords = {commutators of martingales transforms; d-adic martingales},
language = {eng},
number = {1},
pages = {265-270},
publisher = {Association des Annales de l'Institut Fourier},
title = {BMO and commutators of martingale transforms},
url = {http://eudml.org/doc/74487},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Janson, Svante
TI - BMO and commutators of martingale transforms
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 1
SP - 265
EP - 270
AB - The commutator of multiplication by a function and a martingale transform of a certain type is a bounded operator on $L^p$, $1&lt; p&lt; \infty $, if and only if the function belongs to BMO. This is a martingale version of a result by Coifman, Rochberg and Weiss.
LA - eng
KW - commutators of martingales transforms; d-adic martingales
UR - http://eudml.org/doc/74487
ER -

References

top
  1. [1] R.R. COIFMAN, R. ROCHBERG and G. WEISS, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611-635. Zbl0326.32011MR54 #843
  2. [2] C. FEFFERMAN and E.M. STEIN, Hp-spaces of several variables, Acta Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
  3. [3] S. JANSON, Characterizations of H1 by singular integral transforms on martingales and Rn, Math. Scand., 41 (1977), 140-152. Zbl0369.42005MR57 #3729
  4. [4] S. JANSON, Mean oscillation and commutators of singular integral operators, Ark. Mat., 16 (1978), 263-270. Zbl0404.42013MR80j:42034
  5. [5] A. UCHIYAMA, Compactness of operators of Hankel type, Tôhoku Math. J., 30 (1978), 163-171. Zbl0384.47023MR57 #7243

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.