Fourier transform, oscillatory multipliers and evolution equations in rearrangement invariant function spaces

Luca Brandolini; Leonardo Colzani

Colloquium Mathematicae (1996)

  • Volume: 71, Issue: 2, page 273-286
  • ISSN: 0010-1354

How to cite

top

Brandolini, Luca, and Colzani, Leonardo. "Fourier transform, oscillatory multipliers and evolution equations in rearrangement invariant function spaces." Colloquium Mathematicae 71.2 (1996): 273-286. <http://eudml.org/doc/210441>.

@article{Brandolini1996,
author = {Brandolini, Luca, Colzani, Leonardo},
journal = {Colloquium Mathematicae},
keywords = {rearrangement invariant Banach function spaces; Schrödinger and wave equations; Fourier transform; multipliers; rearrangement invariant Banach function space},
language = {eng},
number = {2},
pages = {273-286},
title = {Fourier transform, oscillatory multipliers and evolution equations in rearrangement invariant function spaces},
url = {http://eudml.org/doc/210441},
volume = {71},
year = {1996},
}

TY - JOUR
AU - Brandolini, Luca
AU - Colzani, Leonardo
TI - Fourier transform, oscillatory multipliers and evolution equations in rearrangement invariant function spaces
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 2
SP - 273
EP - 286
LA - eng
KW - rearrangement invariant Banach function spaces; Schrödinger and wave equations; Fourier transform; multipliers; rearrangement invariant Banach function space
UR - http://eudml.org/doc/210441
ER -

References

top
  1. [1] C. Bennett, Banach function spaces and interpolation methods III. Hausdorff-Young estimates, J. Approx. Theory 13 (1975), 267-275. Zbl0311.42005
  2. [2] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. Zbl0647.46057
  3. [3] J. J. F. Fournier and J. Stewart, Amalgams of L p and l q , Bull. Amer. Math. Soc. 13 (1985), 1-21. 
  4. [4] L. Hörmander, Estimates for translation invariant operators on L p spaces, Acta Math. 104 (1960), 93-140. Zbl0093.11402
  5. [5] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69. Zbl0738.35022
  6. [6] V. Lebedev and A. Olevskiĭ, C 1 changes of variables: Beurling-Helson type theorem and Hörmander conjecture on Fourier multipliers, Geom. Funct. Anal. 4 (1994), 213-235. Zbl0798.42004
  7. [7] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979. Zbl0403.46022
  8. [8] W. Littman, The wave operator and L p norms, J. Math. Mech. 12 (1963), 55-68. Zbl0127.31705
  9. [9] D. Müller and A. Seeger, Inequalities for spherically symmetric solutions of the wave equation, Math. Z. 218 (1995), 417-426. Zbl0828.35072
  10. [10] R. S. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714. Zbl0372.35001
  11. [11] P. Szeptycki, Some remarks on the extended domain of Fourier transform, Bull. Amer. Math. Soc. 73 (1967), 398-402. Zbl0166.09903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.