On locally bounded categories stably equivalent to the repetitive algebras of tubular algebras

Zygmunt Pogorzały

Colloquium Mathematicae (1997)

  • Volume: 72, Issue: 1, page 123-146
  • ISSN: 0010-1354

How to cite

top

Pogorzały, Zygmunt. "On locally bounded categories stably equivalent to the repetitive algebras of tubular algebras." Colloquium Mathematicae 72.1 (1997): 123-146. <http://eudml.org/doc/210449>.

@article{Pogorzały1997,
author = {Pogorzały, Zygmunt},
journal = {Colloquium Mathematicae},
keywords = {connected finite dimensional algebras; cotilting modules; repetitive algebras; tubular algebras; trivial extensions; locally bounded categories; tilting modules; stable equivalences},
language = {eng},
number = {1},
pages = {123-146},
title = {On locally bounded categories stably equivalent to the repetitive algebras of tubular algebras},
url = {http://eudml.org/doc/210449},
volume = {72},
year = {1997},
}

TY - JOUR
AU - Pogorzały, Zygmunt
TI - On locally bounded categories stably equivalent to the repetitive algebras of tubular algebras
JO - Colloquium Mathematicae
PY - 1997
VL - 72
IS - 1
SP - 123
EP - 146
LA - eng
KW - connected finite dimensional algebras; cotilting modules; repetitive algebras; tubular algebras; trivial extensions; locally bounded categories; tilting modules; stable equivalences
UR - http://eudml.org/doc/210449
ER -

References

top
  1. [1] I. Assem and A. Skowroński, On tame repetitive algebras, Fund. Math. 142 (1993), 59-84. Zbl0833.16010
  2. [2] I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463. Zbl0617.16017
  3. [3] M. Auslander and I. Reiten, Representation theory of artin algebras III, Comm. Algebra 3 (1975), 239-294. 
  4. [4] M. Auslander and I. Reiten, Representation theory of artin algebras VI, ibid. 6 (1978), 257-300. 
  5. [5] K. Bongartz, Tilted algebras, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, Berlin, 1981, 26-38. Zbl0478.16025
  6. [6] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337. Zbl0628.16019
  7. [7] G. d'Este and C. M. Ringel, Coherent tubes, J. Algebra 87 (1984), 150-201. 
  8. [8] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, Berlin, 1980, 1-71. 
  9. [9] P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, Berlin, 1981, 68-105. 
  10. [10] D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Lecture Notes in Math. 1177, Springer, Berlin, 1986, 156-180. 
  11. [11] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. Zbl0503.16024
  12. [12] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364. Zbl0488.16021
  13. [13] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134. Zbl0677.16008
  14. [14] L. Peng and J. Xiao, Invariability of repetitive algebras of tilted algebras under stable equivalence, J. Algebra 170 (1994), 54-68. Zbl0824.16014
  15. [15] Z. Pogorzały, Algebras stably equivalent to the trivial extensions of hereditary and tubular algebras, preprint, Toruń, 1994. Zbl0824.16012
  16. [16] Z. Pogorzały and A. Skowroński, Symmetric algebras stably equivalent to the trivial extensions of tubular algebras, J. Algebra 181 (1996), 95-111. Zbl0867.16005
  17. [17] C. M. Ringel, Representation theory of finite-dimensional algebras, in: Representations of Algebras, Proc. Durham Symposium 1985, London Math. Soc. Lecture Note Ser. 116, Cambridge Univ. Press, 1986, 7-79. 
  18. [18] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984. 
  19. [19] A. Skowroński, Generalization of Yamagata's theorem on trivial extensions, Arch. Math. (Basel) 48 (1987), 68-76. Zbl0634.16013
  20. [20] H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra 109 (1987), 138-165. Zbl0616.16012
  21. [21] T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299-316. Zbl0609.16016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.