On tame repetitive algebras

Ibrahim Assem; Andrzej Skowroński

Fundamenta Mathematicae (1993)

  • Volume: 142, Issue: 1, page 59-84
  • ISSN: 0016-2736

How to cite

top

Assem, Ibrahim, and Skowroński, Andrzej. "On tame repetitive algebras." Fundamenta Mathematicae 142.1 (1993): 59-84. <http://eudml.org/doc/211972>.

@article{Assem1993,
abstract = {},
author = {Assem, Ibrahim, Skowroński, Andrzej},
journal = {Fundamenta Mathematicae},
keywords = {tame algebras; exhaustive algebras; finite-dimensional, basic and connected algebras; trivial extensions; minimal injective cogenerators; repetitive algebras; push-down functors; covering functors; iterated tilted algebras; simple connectedness of algebras; locally support-finite algebras; representation-infinite tilted of Euclidean type; tilting- cotilting equivalent algebras},
language = {eng},
number = {1},
pages = {59-84},
title = {On tame repetitive algebras},
url = {http://eudml.org/doc/211972},
volume = {142},
year = {1993},
}

TY - JOUR
AU - Assem, Ibrahim
AU - Skowroński, Andrzej
TI - On tame repetitive algebras
JO - Fundamenta Mathematicae
PY - 1993
VL - 142
IS - 1
SP - 59
EP - 84
AB -
LA - eng
KW - tame algebras; exhaustive algebras; finite-dimensional, basic and connected algebras; trivial extensions; minimal injective cogenerators; repetitive algebras; push-down functors; covering functors; iterated tilted algebras; simple connectedness of algebras; locally support-finite algebras; representation-infinite tilted of Euclidean type; tilting- cotilting equivalent algebras
UR - http://eudml.org/doc/211972
ER -

References

top
  1. [1] I. Assem, Tilted algebras of type A n , Comm. Algebra 10 (1982), 2121-2139. Zbl0495.16028
  2. [2] I. Assem and D. Happel, Generalized tilted algebras of type A n , ibid. 9 (1981), 2101-2125. Zbl0481.16009
  3. [3] I. Assem, D. Happel and O. Roldán, Representation-finite trivial extension algebras, J. Pure Appl. Algebra 33 (1984), 235-242. Zbl0564.16027
  4. [4] I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72. Zbl0686.16011
  5. [5] I. Assem and A. Skowroński, Iterated tilted algebras of type  n , Math. Z. 195 (1987), 269-290. Zbl0601.16022
  6. [6] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. (3) 56 (1988), 417-450. Zbl0617.16018
  7. [7] I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463. Zbl0617.16017
  8. [8] I. Assem and A. Skowroński, Quadratic forms and iterated tilted algebras, J. Algebra 128 (1990), 55-85. Zbl0686.16020
  9. [9] M. Auslander and I. Reiten, Representation theory of artin algebras III, IV, Comm. Algebra 3 (1975), 239-294 and 5 (1977), 443-518. 
  10. [10] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1981/82), 331-378. Zbl0482.16026
  11. [11] S. Brenner and M. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 832, Springer, Berlin 1980, 103-169. Zbl0446.16031
  12. [12] O. Bretscher, C. Läser and C. Riedtmann, Self-injective and simply connected algebras, Manuscripta Math. 36 (1981/82), 253-307. Zbl0478.16024
  13. [13] B. Conti, Simply connected algebras of tree-class A n and n , in: Proc. ICRA IV (Ottawa 1984), Lecture Notes in Math. 1177, Springer, Berlin 1986, 60-90. 
  14. [14] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976). 
  15. [15] P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529. Zbl0576.16029
  16. [16] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337. Zbl0628.16019
  17. [17] Yu. A. Drozd, Tame and wild matrix problems, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 832, Springer, Berlin 1980, 242-258. 
  18. [18] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 831, Springer, Berlin 1980, 1-71. 
  19. [19] P. Gabriel, The universal cover of a representation-finite algebra, in: Proc. ICRA III (Puebla 1980), Lecture Notes in Math. 903, Springer, Berlin 1981, 68-105. 
  20. [20] D. Happel, Tilting sets on cylinders, Proc. London Math. Soc. (3) 51 (1985), 21-55. Zbl0583.16020
  21. [21] D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), 339-389. Zbl0626.16008
  22. [22] D. Happel, J. Rickard and A. Schofield, Piecewise hereditary algebras, Bull. London Math. Soc. 20 (1988), 23-28. Zbl0638.16018
  23. [23] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. ath. Soc. 274 (1982), 399-443. Zbl0503.16024
  24. [24] D. Happel and C. M. Ringel, Construction of tilted algebras, in: Proc. ICRA III (Puebla 1980), Lecture Notes in Math. 903, Springer, Berlin 1981, 125-144. 
  25. [25] D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Proc. ICRA IV (Ottawa 1984), Lecture Notes in ath. 1177, Springer, Berlin 1986, 156-180. 
  26. [26] D. Happel and D. Vossieck, inimal algebras of infinite representation type with preprojective component, Manuscripta ath. 42 (1983), 221-243. 
  27. [27] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. (3) 46 (1983), 347-364. Zbl0488.16021
  28. [28] R. Martínez-Villa and J. A. de la Pe na, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (1983), 277-292. Zbl0522.16028
  29. [29] J. Nehring, Polynomial growth trivial extensions of non-simply connected algebras, Bull. Polish Acad. Sci. 36 (1988), 441-445. Zbl0777.16008
  30. [30] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134. Zbl0677.16008
  31. [31] C. M. Ringel, Tame algebras, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 831, Springer, Berlin 1980, 137-287. 
  32. [32] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin 1984. 
  33. [33] C. M. Ringel, Representation theory of finite-dimensional algebras, in: Representations of Algebras, Proc. Durham 1985, Cambridge University Press, 1986, 7-80. 
  34. [34] O. Roldán, Tilted algebras of type ˜ A n , ˜ B n , ˜ C n and ˜ B C n , Ph.D. thesis, Carleton University, 1983. 
  35. [35] A. Skowroński, Generalization of Yamagata's theorem on trivial extensions, Arch. Math. (Basel) 48 (1987), 68-76. Zbl0634.16013
  36. [36] A. Skowroński, On algebras of finite strong global dimension, Bull. Polish Acad. Sci. 35 (1987), 539-547. Zbl0642.16023
  37. [37] A. Skowroński, Group algebras of polynomial growth, anuscripta Math. 59 (1987), 499-516. Zbl0627.16007
  38. [38] A. Skowroński, Selfinjective algebras of polynomial growth, ath. Ann. 285 (1989), 177-199. Zbl0653.16021
  39. [39] A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa 1990, 535-568. 
  40. [40] A. Skowroński and J. Waschbüsch, Representation-finite biserial algebras, J. Reine Angew. Math. 345 (1983), 172-181. Zbl0511.16021
  41. [41] H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra 109 (1987), 138-165. Zbl0616.16012
  42. [42] H. Tachikawa and T. Wakamatsu, Applications of reflection functors for selfinjective algebras, in: Proc. ICRA IV (Ottawa 1984), Lecture Notes in Math. 1177, Springer, Berlin 1986, 308-327. Zbl0572.16019
  43. [43] J. L. Verdier, Catégories dérivées, état 0, in: SGA 4 1/2, Lecture Notes in Math. 569, Springer, Berlin 1977, 262-311. 
  44. [44] T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299-316. Zbl0609.16016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.