Sidon sets and Riesz sets for some measure algebras on the disk

Olivier Gebuhrer; Alan Schwartz

Colloquium Mathematicae (1997)

  • Volume: 72, Issue: 2, page 269-279
  • ISSN: 0010-1354

Abstract

top
Sidon sets for the disk polynomial measure algebra (the continuous disk polynomial hypergroup) are described completely in terms of classical Sidon sets for the circle; an analogue of the F. and M. Riesz theorem is also proved.

How to cite

top

Gebuhrer, Olivier, and Schwartz, Alan. "Sidon sets and Riesz sets for some measure algebras on the disk." Colloquium Mathematicae 72.2 (1997): 269-279. <http://eudml.org/doc/210464>.

@article{Gebuhrer1997,
abstract = {Sidon sets for the disk polynomial measure algebra (the continuous disk polynomial hypergroup) are described completely in terms of classical Sidon sets for the circle; an analogue of the F. and M. Riesz theorem is also proved.},
author = {Gebuhrer, Olivier, Schwartz, Alan},
journal = {Colloquium Mathematicae},
keywords = {disk polynomials; bivariate polynomials; Riesz sets; hypergroups; Sidon sets; disk polynomial; F. and M. Riesz theorem; measure algebra},
language = {eng},
number = {2},
pages = {269-279},
title = {Sidon sets and Riesz sets for some measure algebras on the disk},
url = {http://eudml.org/doc/210464},
volume = {72},
year = {1997},
}

TY - JOUR
AU - Gebuhrer, Olivier
AU - Schwartz, Alan
TI - Sidon sets and Riesz sets for some measure algebras on the disk
JO - Colloquium Mathematicae
PY - 1997
VL - 72
IS - 2
SP - 269
EP - 279
AB - Sidon sets for the disk polynomial measure algebra (the continuous disk polynomial hypergroup) are described completely in terms of classical Sidon sets for the circle; an analogue of the F. and M. Riesz theorem is also proved.
LA - eng
KW - disk polynomials; bivariate polynomials; Riesz sets; hypergroups; Sidon sets; disk polynomial; F. and M. Riesz theorem; measure algebra
UR - http://eudml.org/doc/210464
ER -

References

top
  1. [AT74] H. Annabi et K. Trimèche, Convolution généralisée sur le disque unité, C. R. Acad. Sci. Paris 278 (1974), 21-24. Zbl0273.43009
  2. [BG91] M. Bouhaik and L. Gallardo, A Mehler-Heine formula for disk polynomials, Indag. Math. 1 (1991), 9-18. Zbl0727.33003
  3. [BG92] M. Bouhaik and L. Gallardo, Un théorème limite central dans un hypergroupe bidimensionnel, Ann. Inst. H. Poincaré 28 (1992), 47-61. Zbl0748.60025
  4. [BH95] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Stud. Math. 20, de Gruyter, Berlin, New York, 1995. 
  5. [CS92] W. C. Connett and A. L. Schwartz, Fourier analysis off groups, in: The Madison Symposium on Complex Analysis (Providence, R.I.), A. Nagel and L. Stout (eds.), Contemp. Math. 137, Amer. Math. Soc. 1992, 169-176. Zbl0779.43004
  6. [CS95] W. C. Connett and A. L. Schwartz, Continuous 2-variable polynomial hypergroups, in: Applications of Hypergroups and Related Measure Algebras (Providence, R.I.), O. Gebuhrer, W. C. Connett and A. L. Schwartz (eds.), Contemp. Math. 183, Amer. Math. Soc., 1995, 89-109. Zbl0828.43006
  7. [Edw67] R. E. Edwards, Fourier Series, Vols. I, II, Holt, Rinehart and Winston, New York, 1967. 
  8. [HK93] H. Heyer and S. Koshi, Harmonic Analysis on the Disk Hypergroup, Mathematical Seminar Notes, Tokyo Metropolitan University, 1993. 
  9. [Kan76] Y. Kanjin, A convolution measure algebra on the unit disc, Tôhoku Math. J. (2) 28 (1976), 105-115. 
  10. [Kan85] Y. Kanjin, Banach algebra related to disk polynomials, ibid. 37 (1985), 395-404. 
  11. [Koo72] T. H. Koornwinder, The addition formula for Jacobi polynomials, II, the Laplace type integral representation and the product formula, Tech. Report TW 133/72, Mathematisch Centrum, Amsterdam, 1972. Zbl0247.33018
  12. [Koo78] T. H. Koornwinder, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. (2) 18 (1978), 101-114. Zbl0386.33009
  13. [Rud62] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, 1962. 
  14. [Sze67] G. Szegő, Orthogonal Polynomials, 2nd ed., Colloq. Publ. 23, Amer. Math. Soc., Providence, R.I., 1967. 

NotesEmbed ?

top

You must be logged in to post comments.