Sidon sets and Riesz sets for some measure algebras on the disk
Olivier Gebuhrer; Alan Schwartz
Colloquium Mathematicae (1997)
- Volume: 72, Issue: 2, page 269-279
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topGebuhrer, Olivier, and Schwartz, Alan. "Sidon sets and Riesz sets for some measure algebras on the disk." Colloquium Mathematicae 72.2 (1997): 269-279. <http://eudml.org/doc/210464>.
@article{Gebuhrer1997,
abstract = {Sidon sets for the disk polynomial measure algebra (the continuous disk polynomial hypergroup) are described completely in terms of classical Sidon sets for the circle; an analogue of the F. and M. Riesz theorem is also proved.},
author = {Gebuhrer, Olivier, Schwartz, Alan},
journal = {Colloquium Mathematicae},
keywords = {disk polynomials; bivariate polynomials; Riesz sets; hypergroups; Sidon sets; disk polynomial; F. and M. Riesz theorem; measure algebra},
language = {eng},
number = {2},
pages = {269-279},
title = {Sidon sets and Riesz sets for some measure algebras on the disk},
url = {http://eudml.org/doc/210464},
volume = {72},
year = {1997},
}
TY - JOUR
AU - Gebuhrer, Olivier
AU - Schwartz, Alan
TI - Sidon sets and Riesz sets for some measure algebras on the disk
JO - Colloquium Mathematicae
PY - 1997
VL - 72
IS - 2
SP - 269
EP - 279
AB - Sidon sets for the disk polynomial measure algebra (the continuous disk polynomial hypergroup) are described completely in terms of classical Sidon sets for the circle; an analogue of the F. and M. Riesz theorem is also proved.
LA - eng
KW - disk polynomials; bivariate polynomials; Riesz sets; hypergroups; Sidon sets; disk polynomial; F. and M. Riesz theorem; measure algebra
UR - http://eudml.org/doc/210464
ER -
References
top- [AT74] H. Annabi et K. Trimèche, Convolution généralisée sur le disque unité, C. R. Acad. Sci. Paris 278 (1974), 21-24. Zbl0273.43009
- [BG91] M. Bouhaik and L. Gallardo, A Mehler-Heine formula for disk polynomials, Indag. Math. 1 (1991), 9-18. Zbl0727.33003
- [BG92] M. Bouhaik and L. Gallardo, Un théorème limite central dans un hypergroupe bidimensionnel, Ann. Inst. H. Poincaré 28 (1992), 47-61. Zbl0748.60025
- [BH95] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Stud. Math. 20, de Gruyter, Berlin, New York, 1995.
- [CS92] W. C. Connett and A. L. Schwartz, Fourier analysis off groups, in: The Madison Symposium on Complex Analysis (Providence, R.I.), A. Nagel and L. Stout (eds.), Contemp. Math. 137, Amer. Math. Soc. 1992, 169-176. Zbl0779.43004
- [CS95] W. C. Connett and A. L. Schwartz, Continuous 2-variable polynomial hypergroups, in: Applications of Hypergroups and Related Measure Algebras (Providence, R.I.), O. Gebuhrer, W. C. Connett and A. L. Schwartz (eds.), Contemp. Math. 183, Amer. Math. Soc., 1995, 89-109. Zbl0828.43006
- [Edw67] R. E. Edwards, Fourier Series, Vols. I, II, Holt, Rinehart and Winston, New York, 1967.
- [HK93] H. Heyer and S. Koshi, Harmonic Analysis on the Disk Hypergroup, Mathematical Seminar Notes, Tokyo Metropolitan University, 1993.
- [Kan76] Y. Kanjin, A convolution measure algebra on the unit disc, Tôhoku Math. J. (2) 28 (1976), 105-115.
- [Kan85] Y. Kanjin, Banach algebra related to disk polynomials, ibid. 37 (1985), 395-404.
- [Koo72] T. H. Koornwinder, The addition formula for Jacobi polynomials, II, the Laplace type integral representation and the product formula, Tech. Report TW 133/72, Mathematisch Centrum, Amsterdam, 1972. Zbl0247.33018
- [Koo78] T. H. Koornwinder, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. (2) 18 (1978), 101-114. Zbl0386.33009
- [Rud62] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, 1962.
- [Sze67] G. Szegő, Orthogonal Polynomials, 2nd ed., Colloq. Publ. 23, Amer. Math. Soc., Providence, R.I., 1967.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.