Transference theory onHardy and Sobolev spaces

Maria Carro; Javier Soria

Colloquium Mathematicae (1997)

  • Volume: 74, Issue: 1, page 47-69
  • ISSN: 0010-1354

Abstract

top
We show that the transference method of Coifman and Weiss can be extended to Hardy and Sobolev spaces. As an application we obtain the de Leeuw restriction theorems for multipliers.

How to cite

top

Carro, Maria, and Soria, Javier. "Transference theory onHardy and Sobolev spaces." Colloquium Mathematicae 74.1 (1997): 47-69. <http://eudml.org/doc/210501>.

@article{Carro1997,
abstract = {We show that the transference method of Coifman and Weiss can be extended to Hardy and Sobolev spaces. As an application we obtain the de Leeuw restriction theorems for multipliers.},
author = {Carro, Maria, Soria, Javier},
journal = {Colloquium Mathematicae},
keywords = {transference theorem; convolution operators; multipliers; de Leeuw type restriction theorem},
language = {eng},
number = {1},
pages = {47-69},
title = {Transference theory onHardy and Sobolev spaces},
url = {http://eudml.org/doc/210501},
volume = {74},
year = {1997},
}

TY - JOUR
AU - Carro, Maria
AU - Soria, Javier
TI - Transference theory onHardy and Sobolev spaces
JO - Colloquium Mathematicae
PY - 1997
VL - 74
IS - 1
SP - 47
EP - 69
AB - We show that the transference method of Coifman and Weiss can be extended to Hardy and Sobolev spaces. As an application we obtain the de Leeuw restriction theorems for multipliers.
LA - eng
KW - transference theorem; convolution operators; multipliers; de Leeuw type restriction theorem
UR - http://eudml.org/doc/210501
ER -

References

top
  1. [ABG1] N. Asmar, E. Berkson and T. A. Gillespie, Transference of strong type maximal inequalities by separation-preserving representations, Amer. J. Math. 113 (1991), 47-74. Zbl0729.43003
  2. [ABG2] N. Asmar, E. Berkson and T. A. Gillespie, Transference of weak type maximal inequalities by distributionally bounded representations, Quart. J. Math. Oxford 43 (1992), 259-282. Zbl0795.43007
  3. [CT] R. Caballero and A. de la Torre, An atomic theory for ergodic H p spaces, Studia Math. 82 (1985), 39-59. Zbl0593.46046
  4. [CW1] R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., 1977. 
  5. [CW2] R. Coifman and G. Weiss, Maximal functions and H p spaces defined by ergodic transformations, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 1761-1763. Zbl0257.46077
  6. [C] L. Colzani, Fourier transform of distributions in Hardy spaces, Boll. Un. Mat. Ital. A (6) 1 (1982), 403-410. Zbl0505.46030
  7. [D] K. de Leeuw, On L p multipliers, Ann. of Math. 81 (1965), 364-379. 
  8. [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer, 1963. 
  9. [M] A. Miyachi, On some Fourier multipliers for H p ( R n ) , J. Fac. Sci. Univ. Tokyo 27 (1980), 157-179. Zbl0433.42019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.