A Characterization of Pontryagin Duality.
Page 1 Next
Rangachari Venkataraman (1976)
Mathematische Zeitschrift
Astengo, Francesca (1995)
Journal of Lie Theory
Tadeusz Pytlik (1984)
Studia Mathematica
Denise Szecsei (2007)
Colloquium Mathematicae
We define a class of measures having the following properties: (1) the measures are supported on self-similar fractal subsets of the unit cube , with 0 and 1 identified as necessary; (2) the measures are singular with respect to normalized Lebesgue measure m on ; (3) the measures have the convolution property that for some ε = ε(p) > 0 and all p ∈ (1,∞). We will show that if (1/p,1/q) lies in the triangle with vertices (0,0), (1,1) and (1/2,1/3), then for any measure μ in our class.
Daniel M. Oberlin (1982)
Colloquium Mathematicae
Daniel M. Oberlin (2003)
Colloquium Mathematicae
For 1 ≤ p,q ≤ ∞, we prove that the convolution operator generated by the Cantor-Lebesgue measure on the circle is a contraction whenever it is bounded from to . We also give a condition on p which is necessary if this operator maps into L²().
W. A. Woyczynski (1974/1975)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
G.I. Gaudry, S. Meda, R. Pini (1990)
Monatshefte für Mathematik
Johan F. Aarnes (1971)
Mathematica Scandinavica
Charles McCarthy (1974)
Studia Mathematica
David L. Johnson (1982)
Colloquium Mathematicae
H. Sedaghat (1993)
Semigroup forum
William L. Paschke (1993)
Mathematica Scandinavica
A. Derighetti (1982)
Publications du Département de mathématiques (Lyon)
Jacek Dziubański (1989)
Colloquium Mathematicae
Jaroslaw Krawczyk (1990)
Monatshefte für Mathematik
W. Hebisch, J. Krawczyk (1992)
Monatshefte für Mathematik
Saverio Giulini (1989)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
A convolution operator, bounded on L^{q}(\mathbb{R}^{n}), is bounded on L^{p}(\mathbb{R}^{n}), with the same operator norm, if p and q are conjugate exponents. It is well known that this fact is false if we replace \mathbb{R}^{n} with a general non-commutative locally compact group G. In this paper we give a simple construction of a convolution operator on a suitable compact group G, wich is bounded on L^{q}(G) for every q\in[2,\infty) and is unbounded on L^{p}(G) if p\in[1,2).
Paweł Głowacki, Andrzej Hulanicki (1987)
Colloquium Mathematicae
E.M. Alfsen (1963)
Mathematica Scandinavica
Page 1 Next