Representation Type of Posets and Finite Rank Butler Groups
Colloquium Mathematicae (1998)
- Volume: 74, Issue: 2, page 299-320
- ISSN: 0010-1354
Access Full Article
topHow to cite
topArnold, D., and Dugas, M.. "Representation Type of Posets and Finite Rank Butler Groups." Colloquium Mathematicae 74.2 (1998): 299-320. <http://eudml.org/doc/210520>.
@article{Arnold1998,
author = {Arnold, D., Dugas, M.},
journal = {Colloquium Mathematicae},
keywords = {finite rank Butler groups; representation type; representation theory of posets; category equivalences; wildness},
language = {eng},
number = {2},
pages = {299-320},
title = {Representation Type of Posets and Finite Rank Butler Groups},
url = {http://eudml.org/doc/210520},
volume = {74},
year = {1998},
}
TY - JOUR
AU - Arnold, D.
AU - Dugas, M.
TI - Representation Type of Posets and Finite Rank Butler Groups
JO - Colloquium Mathematicae
PY - 1998
VL - 74
IS - 2
SP - 299
EP - 320
LA - eng
KW - finite rank Butler groups; representation type; representation theory of posets; category equivalences; wildness
UR - http://eudml.org/doc/210520
ER -
References
top- D. M. Arnold, Finite Rank Torsion-Free Abelian Groups and Rings, Lecture Notes in Math. 931, Springer, New York, 1982. Zbl0493.20034
- D. M. Arnold, Representations of partially ordered sets and abelian groups, in: Contemp. Math. 87, Amer. Math. Soc., 1989, 91-109.
- D. M. Arnold and M. Dugas, Block rigid almost completely decomposable groups and lattices over multiple pullback rings, J. Pure Appl. Algebra 87 (1993), 105-121. Zbl0818.20065
- D. M. Arnold and M. Dugas, Butler groups with finite typesets and free groups with distinguished subgroups, Comm. Algebra 21 (1993), 1947-1982. Zbl0776.20017
- D. M. Arnold and M. Dugas, Locally free finite rank Butler groups and near isomorphism, in: Abelian Groups and Modules, Kluwer, Boston, 1995, 41-48. Zbl0841.20051
- D. M. Arnold and M. Dugas, Representations of finite posets and near-isomorphism of finite rank Butler groups, Rocky Mountain J. Math. 25 (1995), 591-609. Zbl0835.20073
- D. M. Arnold and C. Vinsonhaler, Finite rank Butler groups: A survey of recent results, in: Abelian Groups, Lecture Notes in Pure and Appl. Math. 146, Marcel Dekker, New York, 1993, 17-41. Zbl0804.20043
- S. Brenner, Decomposition properties of some small diagrams of modules, Sympos. Math. 13 (1974), 127-141.
- M. C. R. Butler, A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. (3) 15 (1965), 680-698. Zbl0131.02501
- M. C. R. Butler, Torsion-free modules and diagrams of vector spaces, ibid. 18 (1968), 635-652. Zbl0179.32603
- M. C. R. Butler, Some almost split sequences in torsion-free abelian group theory, in: Abelian Group Theory, Gordon and Breach, New York, 1987, 291-302.
- M. Dugas and E. Oxford, Near isomorphism invariants for a class of almost completely decomposable groups, in: Abelian Groups, Lecture Notes in Pure and Appl. Math. 146, Marcel Dekker, New York, 1993, 129-150. Zbl0806.20042
- S. Files and R. Goebel, Gauß' theorem for two submodules, submitted for publication, 1996.
- L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973. Zbl0257.20035
- E. L. Lady, Nearly isomorphic torsion-free abelian groups, J. Algebra 35 (1975), 235-238. Zbl0322.20025
- V. V. Plahotnik, Representations of partially ordered sets over commutative rings, Math. USSR-Izv. 10 (1976), 497-514. Zbl0369.06002
- F. Richman, Isomorphism of Butler groups at a prime, in: Abelian Group Theory and Related Topics (Oberwolfach, 1993), Contemp. Math. 171, 1994, 333-337. Zbl0857.20035
- D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, Philadelphia, 1992. Zbl0818.16009
- D. Simson, On representation types of module subcategories and orders, Bull. Polish Acad. Sci. Math. 41 (1993), 77-93. Zbl0805.16011
- D. Simson, Socle projective representations of partially ordered sets and Tits quadratic forms with applications to lattices over orders, in: Abelian Groups and Modules, Marcel Dekker, New York, 1996, 73-112. Zbl0869.16008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.