Invariant manifolds for one-dimensional parabolic partial differential equations of second order

Janusz Mierczyński

Colloquium Mathematicae (1998)

  • Volume: 75, Issue: 2, page 285-314
  • ISSN: 0010-1354

How to cite

top

Mierczyński, Janusz. "Invariant manifolds for one-dimensional parabolic partial differential equations of second order." Colloquium Mathematicae 75.2 (1998): 285-314. <http://eudml.org/doc/210543>.

@article{Mierczyński1998,
author = {Mierczyński, Janusz},
journal = {Colloquium Mathematicae},
keywords = {periodic solutions; parabolic equation; asymptotic behaviour; invariant foliations; fixed point},
language = {eng},
number = {2},
pages = {285-314},
title = {Invariant manifolds for one-dimensional parabolic partial differential equations of second order},
url = {http://eudml.org/doc/210543},
volume = {75},
year = {1998},
}

TY - JOUR
AU - Mierczyński, Janusz
TI - Invariant manifolds for one-dimensional parabolic partial differential equations of second order
JO - Colloquium Mathematicae
PY - 1998
VL - 75
IS - 2
SP - 285
EP - 314
LA - eng
KW - periodic solutions; parabolic equation; asymptotic behaviour; invariant foliations; fixed point
UR - http://eudml.org/doc/210543
ER -

References

top
  1. [1] H. Amann, Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z. 150 (1976), 281-295. Zbl0331.35026
  2. [2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709. Zbl0345.47044
  3. [3] H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations (1990), 13-75. Zbl0729.35062
  4. [4] S. Angenent, The Morse-Smale property for a semi-linear parabolic equation, J. Differential Equations 62 (1986), 427-442. Zbl0581.58026
  5. [5] S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79-96. Zbl0644.35050
  6. [6] S. Angenent, Nonlinear analytic semiflows, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 91-107. Zbl0723.34047
  7. [7] N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190. Zbl0342.46034
  8. [8] P. Brunovský and B. Fiedler, Numbers of zeros on invariant manifolds in reaction-diffusion equations, Nonlinear Anal. 10 (1986), 179-193. 
  9. [9] P. Brunovský and B. Fiedler, Connecting orbits in scalar reaction diffusion equations. II: The complete solution, J. Differential Equations 81 (1989), 106-135. Zbl0699.35144
  10. [10] P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equations in one space dimension, Nonlinear Anal. 18 (1992), 209-215. Zbl0796.35009
  11. [11] M. Chen, X.-Y. Chen and J. K. Hale, Structural stability for time-periodic one-dimensional parabolic equations, J. Differential Equations 96 (1992), 355-418. Zbl0779.35061
  12. [12] X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equation, ibid. 78 (1989), 160-190. Zbl0692.35013
  13. [13] X.-Y. Chen and P. Poláčik, Gradient-like structure and Morse decompositions for time-periodic one-dimensional parabolic equations, J. Dynam. Differential Equations 7 (1995), 73-107. 
  14. [14] S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren Math. Wiss. 251, Springer, New York, 1982. Zbl0487.47039
  15. [15] S.-N. Chow, X.-B. Lin and K. Lu, Smooth invariant foliations in infinite dimensional spaces, J. Differential Equations 94 (1991), 266-291. Zbl0749.58043
  16. [16] S.-N. Chow, K. Lu and J. Mallet-Paret, Floquet bundles for scalar parabolic equations, Arch. Rational Mech. Anal. 129 (1995), 245-304. Zbl0822.35057
  17. [17] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. Zbl0559.47040
  18. [18] C. Foiaş and J.-C. Saut, On the smoothness of the nonlinear spectral manifolds of Navier-Stokes equations, Indiana Univ. Math. J. 33 (1984), 911-926. Zbl0572.35081
  19. [19] G. Fusco and W. M. Oliva, Jacobi matrices and transversality, Proc. Roy. Soc. Edinburgh Sect. A 109 (1988), 231-243. Zbl0692.58019
  20. [20] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs 25, Amer. Math. Soc., Providence, R.I., 1988. Zbl0642.58013
  21. [21] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer, Berlin, 1981. Zbl0456.35001
  22. [22] D. Henry, Some infinite dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations 53 (1985), 401-458. 
  23. [23] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser. 247, Longman Sci. Tech., Harlow, 1991. Zbl0731.35050
  24. [24] M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math. 383 (1988), 1-53. Zbl0624.58017
  25. [25] M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer, Berlin, 1977. 
  26. [26] H. Koch, Finite dimensional aspects of semilinear parabolic equations, J. Dynam. Differential Equations 8 (1996), 177-202. Zbl0860.35056
  27. [27] H.-H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463, Springer, Berlin, 1975. 
  28. [28] S. Lang, Differential Manifolds, Addison-Wesley, Reading, Mass., 1972. 
  29. [29] H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ. 18 (1978), 221-227. Zbl0387.35008
  30. [30] H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 401-441. Zbl0496.35011
  31. [31] J. Mierczyński, On monotone trajectories, Proc. Amer. Math. Soc. 113 (1991), 537-544. Zbl0737.58010
  32. [32] J. Mierczyński, P-arcs in strongly monotone discrete-time dynamical systems, Differential Integral Equations 7 (1994), 1473-1494. Zbl0864.58054
  33. [33] M. Miklavčič, Stability for semilinear parabolic equations with noninvertible linear operator, Pacific J. Math. 118 (1985), 199-214. Zbl0559.35037
  34. [34] K. Nickel, Gestaltaussagen über Lösungen parabolischer Differentialgleichungen, J. Reine Angew. Math. 211 (1962), 78-94. 
  35. [35] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983. 
  36. [36] R. R. Phelps, Gaussian null sets and differentiability of Lipschitz maps on Banach spaces, Pacific J. Math. 77 (1978), 523-531. Zbl0396.46041
  37. [37] P. Poláčik, Domains of attraction of equilibria and monotonicity properties of convergent trajectories in parabolic systems admitting strong comparison principle, J. Reine Angew. Math. 400 (1989), 32-56. Zbl0667.35036
  38. [38] W. Shen and Y. Yi, On minimal sets of scalar parabolic equations with skew-product structures, Trans. Amer. Math. Soc. 347 (1995), 4413-4431. Zbl0849.35005
  39. [39] A. V. Skorokhod [A. V. Skorohod], Integration in Hilbert Space, translated from the Russian by K. Wickwire, Ergeb. Math. Grenzgeb. 79, Springer, New York, 1974. 
  40. [40] J. Smillie, Competitive and cooperative tridiagonal systems of differential equations, SIAM J. Math. Anal. 15 (1984), 530-534. Zbl0546.34007
  41. [41] P. Takáč, Convergence to equilibrium on invariant d -hypersurfaces for strongly increasing discrete-time semigroups, J. Math. Anal. Appl. 148 (1990), 223-244. Zbl0744.47037
  42. [42] P. Takáč, Domains of attraction of generic ο m e g a -limit sets for strongly monotone discrete-time semigroups, J. Reine Angew. Math. 423 (1992), 101-173. Zbl0729.54022
  43. [43] T. I. Zelenyak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable, Differentsial ' nye Uravneniya 4 (1968), 34-45; English transl.: Differential Equations 4 (1968), 17-22. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.