The Ziegler spectrum of a tame hereditary algebra

Claus Ringel

Colloquium Mathematicae (1998)

  • Volume: 76, Issue: 1, page 105-115
  • ISSN: 0010-1354

How to cite


Ringel, Claus. "The Ziegler spectrum of a tame hereditary algebra." Colloquium Mathematicae 76.1 (1998): 105-115. <>.

author = {Ringel, Claus},
journal = {Colloquium Mathematicae},
keywords = {finite-dimensional hereditary algebras; tame representation type; categories of modules; algebraically compact modules; Ziegler spectrum},
language = {eng},
number = {1},
pages = {105-115},
title = {The Ziegler spectrum of a tame hereditary algebra},
url = {},
volume = {76},
year = {1998},

AU - Ringel, Claus
TI - The Ziegler spectrum of a tame hereditary algebra
JO - Colloquium Mathematicae
PY - 1998
VL - 76
IS - 1
SP - 105
EP - 115
LA - eng
KW - finite-dimensional hereditary algebras; tame representation type; categories of modules; algebraically compact modules; Ziegler spectrum
UR -
ER -


  1. [B] W. Baur, On the elementary theory of quadruples of vector spaces, Ann. Math. Logic 19 (1980), 243-262. Zbl0453.03010
  2. [CB] W. Crawley-Boevey, Infinite-dimensional modules in the representation theory of finite-dimensional algebras, Trondheim lectures, 1996. 
  3. [DR1] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976). 
  4. [DR2] V. Dlab and C. M. Ringel, The representations of tame hereditary algebras, in: Representation Theory of Algebras (Proc. Philadelphia Conf. 1976), Lecture Notes in Pure Appl. Math. 37, Marcel Dekker, 1978, 329-353. 
  5. [DF] P. Donovan and M. R. Freislich, The Representation Theory of Finite Graphs and Associated Algebras, Carleton Math. Lecture Notes 5, Carleton Univ., Ottawa, 1973. 
  6. [Gg] W. Geigle, The Krull-Gabriel dimension of the representation theory of a tame hereditary algebra and applications to the structure of exact sequences, Manuscripta Math. 54 (1985), 83-106. Zbl0593.16022
  7. [G] G. Geisler, Zur Modelltheorie von Moduln, Dissertation, Freiburg/Brg., 1994, 276 pp. 
  8. [H] I. Herzog, Elementary duality of modules, Trans. Amer. Math. Soc. 340 (1993), 37-69. Zbl0815.16002
  9. [JL] C. U. Jensen and H. Lenzing, Model Theoretic Algebra, Gordon and Breach, New York, 1989. 
  10. [K] H. Krause, The endocategory of a module, in: CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 419-432. Zbl0852.16003
  11. [P1] M. Prest, Tame categories of modules and decidability, preprint, Univ. of Liverpool, 1985. 
  12. [P2] M. Prest, Model Theory and Modules, London Math. Soc. Lecture Note Ser. 130, Cambridge Univ. Press, 1988. 
  13. [P3] M. Prest, Ziegler spectra of tame hereditary algebras, preprint 1997. 
  14. [R1] C. M. Ringel, Infinite-dimensional representations of finite-dimensional hereditary algebras, in: Sympos. Math. 23, Academic Press, 1979, 321-412. 
  15. [R2] C. M. Ringel, Tame algebras, in: Proceedings ICRA 2, Lecture Notes in Math. 831, Springer, 1980, 137-287. 
  16. [R3] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  17. [R4] C. M. Ringel, A construction of endofinite modules, in: Adv. Algebra Model Theory, Gordon and Breach, London, to appear. 
  18. [Z] M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (2) (1984), 149-213. Zbl0593.16019

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.