# Exact Neumann boundary controllability for second order hyperbolic equations

Colloquium Mathematicae (1998)

- Volume: 76, Issue: 1, page 117-142
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topLiu, Weijiu, and Williams, Graham. "Exact Neumann boundary controllability for second order hyperbolic equations." Colloquium Mathematicae 76.1 (1998): 117-142. <http://eudml.org/doc/210545>.

@article{Liu1998,

abstract = {Using HUM, we study the problem of exact controllability with Neumann boundary conditions for second order hyperbolic equations. We prove that these systems are exactly controllable for all initial states in $L^2(\{\Omega \})\times (H^1(\{\Omega \}))^\{\prime \}$ and we derive estimates for the control time T.},

author = {Liu, Weijiu, Williams, Graham},

journal = {Colloquium Mathematicae},

keywords = {Neumann boundary condition; HUM; exact controllability; second order hyperbolic equation; Hilbert uniqueness method; second order hyperbolic equations; Neumann boundary control; exact boundary controllability; multiplier techniques; regularity of solutions; observability inequality},

language = {eng},

number = {1},

pages = {117-142},

title = {Exact Neumann boundary controllability for second order hyperbolic equations},

url = {http://eudml.org/doc/210545},

volume = {76},

year = {1998},

}

TY - JOUR

AU - Liu, Weijiu

AU - Williams, Graham

TI - Exact Neumann boundary controllability for second order hyperbolic equations

JO - Colloquium Mathematicae

PY - 1998

VL - 76

IS - 1

SP - 117

EP - 142

AB - Using HUM, we study the problem of exact controllability with Neumann boundary conditions for second order hyperbolic equations. We prove that these systems are exactly controllable for all initial states in $L^2({\Omega })\times (H^1({\Omega }))^{\prime }$ and we derive estimates for the control time T.

LA - eng

KW - Neumann boundary condition; HUM; exact controllability; second order hyperbolic equation; Hilbert uniqueness method; second order hyperbolic equations; Neumann boundary control; exact boundary controllability; multiplier techniques; regularity of solutions; observability inequality

UR - http://eudml.org/doc/210545

ER -

## References

top- [1] R. F. Apolaya, Exact controllability for temporally wave equations, Portugal. Math. 51 (1994), 475-488. Zbl0828.49008
- [2] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), 1024-1065. Zbl0786.93009
- [3] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Evolution Problems I, Springer, Berlin, 1992. Zbl0755.35001
- [4] J. K. Hale, Ordinary Differential Equations, Wiley-Interscience, New York, 1969. Zbl0186.40901
- [5] V. Komornik, Exact controllability in short time for the wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 153-164. Zbl0672.49025
- [6] V. Komornik, Contrôlabilité exacte en un temps minimal, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), 223-225. Zbl0611.49027
- [7] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985. Zbl0588.35003
- [8] I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl. 65 (1986), 149-192. Zbl0631.35051
- [9] J. L. Lions, Contrôlabilité exacte$,$ perturbations et stabilisation de systèmes distribués, Tome $1$, Contrôlabilité exacte, Masson, Paris, 1988.
- [10] J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vols. I and II, Springer, Berlin, 1972. Zbl0227.35001
- [11] M. M. Miranda, HUM and the wave equation with variable coefficients, Asymptotic Anal. 11 (1995), 317-341. Zbl0848.93031
- [12] J. E. Mu noz Rivera, Exact controllability: coefficient depending on the time, SIAM J. Control Optim. 28 (1990), 498-501. Zbl0695.93008
- [13] D. L. Russell, Exact boundary value controllability theorems for wave and heat processes in star-complemented regions, in: Differential Games and Control Theory, E. O. Roxin, P. T. Liu, and R. L. Sternberg (eds.), Lecture Notes in Pure Appl. Math. 10, Marcel Dekker, New York, 1974, 291-319.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.