L 2 Estimates for Oscillatory Integrals

G. Sampson

Colloquium Mathematicae (1998)

  • Volume: 76, Issue: 2, page 201-211
  • ISSN: 0010-1354

How to cite

top

Sampson, G.. "$L^2$ Estimates for Oscillatory Integrals." Colloquium Mathematicae 76.2 (1998): 201-211. <http://eudml.org/doc/210560>.

@article{Sampson1998,
author = {Sampson, G.},
journal = {Colloquium Mathematicae},
keywords = { estimate; oscillatory integrals; non-convolution operators},
language = {eng},
number = {2},
pages = {201-211},
title = {$L^2$ Estimates for Oscillatory Integrals},
url = {http://eudml.org/doc/210560},
volume = {76},
year = {1998},
}

TY - JOUR
AU - Sampson, G.
TI - $L^2$ Estimates for Oscillatory Integrals
JO - Colloquium Mathematicae
PY - 1998
VL - 76
IS - 2
SP - 201
EP - 211
LA - eng
KW - estimate; oscillatory integrals; non-convolution operators
UR - http://eudml.org/doc/210560
ER -

References

top
  1. [1] Y. Pan and G. Sampson, The complete ( L p , L p ) mapping properties for a class of oscillatory integrals, J. Fourier Anal. Appl., to appear. Zbl0911.42008
  2. [2] Y. Pan, G. Sampson and P. Szeptycki, L 2 and L p estimates for oscillatory integrals and their extended domains, Studia Math. 122 (1997), 201-224. 
  3. [3] G. Sampson, Oscillatory kernels that map H 1 into L 1 , Ark. Mat. 18 (1980), 125-140. Zbl0473.42013
  4. [4] I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28. Zbl42.0367.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.