L 2 and L p estimates for oscillatory integrals and their extended domains

Yibiao Pan; Gary Sampson; Paweł Szeptycki

Studia Mathematica (1997)

  • Volume: 122, Issue: 3, page 201-224
  • ISSN: 0039-3223

Abstract

top
We prove the L p boundedness of certain nonconvolutional oscillatory integral operators and give explicit description of their extended domains. The class of phase functions considered here includes the function | x | α | y | β . Sharp boundedness results are obtained in terms of α, β, and rate of decay of the kernel at infinity.

How to cite

top

Pan, Yibiao, Sampson, Gary, and Szeptycki, Paweł. "$L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains." Studia Mathematica 122.3 (1997): 201-224. <http://eudml.org/doc/216372>.

@article{Pan1997,
abstract = {We prove the $L^p$ boundedness of certain nonconvolutional oscillatory integral operators and give explicit description of their extended domains. The class of phase functions considered here includes the function $|x|^\{α\}|y|^\{β\}$. Sharp boundedness results are obtained in terms of α, β, and rate of decay of the kernel at infinity.},
author = {Pan, Yibiao, Sampson, Gary, Szeptycki, Paweł},
journal = {Studia Mathematica},
keywords = {$L^p$ boundedness; oscillatory integrals; extended domains; Calderón-Zygmund kernels; boundedness; oscillatory singular integral operators},
language = {eng},
number = {3},
pages = {201-224},
title = {$L^\{2\}$ and $L^\{p\}$ estimates for oscillatory integrals and their extended domains},
url = {http://eudml.org/doc/216372},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Pan, Yibiao
AU - Sampson, Gary
AU - Szeptycki, Paweł
TI - $L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 3
SP - 201
EP - 224
AB - We prove the $L^p$ boundedness of certain nonconvolutional oscillatory integral operators and give explicit description of their extended domains. The class of phase functions considered here includes the function $|x|^{α}|y|^{β}$. Sharp boundedness results are obtained in terms of α, β, and rate of decay of the kernel at infinity.
LA - eng
KW - $L^p$ boundedness; oscillatory integrals; extended domains; Calderón-Zygmund kernels; boundedness; oscillatory singular integral operators
UR - http://eudml.org/doc/216372
ER -

References

top
  1. [AS] Aronszajn, N. and Szeptycki, P., On general integral transformations, Math. Ann. 163 (1966), 127-154. Zbl0171.12402
  2. [FS] J. J. F. Fournier and Stewart, J., Amalgams of L p and l q , Bull. Amer. Math. Soc. 13 (1985), 1-21. 
  3. [G] Gagliardo, E., On integral transformations with positive kernels, Proc. Amer. Math. Soc. 16 (1965), 429-434. Zbl0161.32404
  4. [Ho] Hörmander, L., The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983. 
  5. [JS] Jurkat, W.B. and Sampson, G., The complete solution to the ( L p , L q ) mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. Zbl0507.47013
  6. [LS] Labuda, I. and Szeptycki, P., Extended domains of some integral operators with rapidly oscillating kernels, Nederl. Akad. Wetensch. Proc. 89 (1986), 87-98. Zbl0622.47032
  7. [LS2] Labuda, Extensions of integral operators, Math. Ann. 281 (1988), 341-353. Zbl0617.45013
  8. [M] Muckenhoupt, B., Weighted norm inequalities for the Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl0236.26016
  9. [Pan] Pan, Y., Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64. Zbl0728.42013
  10. [PS] Phong, D.H. and Stein, E.M., Hilbert integrals, singular integrals, and Radon transforms I, Acta Math. 157 (1986), 99-157. Zbl0622.42011
  11. [Sj] Sjölin, P., Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715. Zbl0631.42010
  12. [St] Stein, E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993. 
  13. [Sz] Szeptycki,P., Extended domains of some integral operators, Rocky Mountain J. Math. 22 (1992), 393-404. Zbl0761.47026
  14. [Wal] Walther, B.G., Maximal estimates for oscillatory integrals with concave phase, preprint, 1994. 
  15. [Zyg] Zygmund, A., Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.