Comultiplications of the Wedge of Two Moore Spaces

Marek Golasiński; Daciberg Gonçalves

Colloquium Mathematicae (1998)

  • Volume: 76, Issue: 2, page 229-242
  • ISSN: 0010-1354

How to cite

top

Golasiński, Marek, and Gonçalves, Daciberg. "Comultiplications of the Wedge of Two Moore Spaces." Colloquium Mathematicae 76.2 (1998): 229-242. <http://eudml.org/doc/210562>.

@article{Golasiński1998,
author = {Golasiński, Marek, Gonçalves, Daciberg},
journal = {Colloquium Mathematicae},
keywords = {Moore space; wedge of Moore spaces; Abelian 2-groups},
language = {eng},
number = {2},
pages = {229-242},
title = {Comultiplications of the Wedge of Two Moore Spaces},
url = {http://eudml.org/doc/210562},
volume = {76},
year = {1998},
}

TY - JOUR
AU - Golasiński, Marek
AU - Gonçalves, Daciberg
TI - Comultiplications of the Wedge of Two Moore Spaces
JO - Colloquium Mathematicae
PY - 1998
VL - 76
IS - 2
SP - 229
EP - 242
LA - eng
KW - Moore space; wedge of Moore spaces; Abelian 2-groups
UR - http://eudml.org/doc/210562
ER -

References

top
  1. [1] M. Arkowitz and M. Golasiński, Co-H-structures on Moore spaces of type (G,2), Canad. J. Math. 46 (1994), 673-686. Zbl0829.55006
  2. [2] M. Arkowitz and G. Lupton, Rational co-H-spaces, Comment. Math. Helv. 66 (1991), 79-109. 
  3. [3] M. Arkowitz and G. Lupton, Equivalence classes of homotopy-associative comultiplications of finite complexes, J. Pure Appl. Algebra 102 (1995), 109-136. Zbl0862.57026
  4. [4] M. G. Barratt, Track groups I, Proc. London Math. Soc. 5 (1955), 71-106; II, ibid., 285-329. Zbl0064.17103
  5. [5] B H. J. Baues, Quadratic functors and metastable homotopy, J. Pure Appl. Algebra 91 (1994), 49-107. Zbl0790.55014
  6. [6] M. Golasiński and D. L. Gonçalves, On co-Moore spaces, Math. Scand., to appear. Zbl0921.55005
  7. [7] H P. J. Hilton, Homotopy Theory and Duality, Gordon and Breach, New York, 1965. 
  8. [8] R. E. Mosher and M. C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper and Row, New York, 1968. Zbl0153.53302
  9. [9] C. M. Naylor, On the number of comultiplications of a suspension, Illinois J. Math. 12 (1968), 620-622. Zbl0165.56701
  10. [10] G. W. Whitehead, Elements of Homotopy Theory, Springer, Berlin, 1978. Zbl0406.55001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.