The Grothendieck group of GL(F)×GL(G)-equivariant modules over the coordinate ring of determinantal varieties

J. Weyman

Colloquium Mathematicae (1998)

  • Volume: 76, Issue: 2, page 243-263
  • ISSN: 0010-1354

How to cite

top

Weyman, J.. "The Grothendieck group of GL(F)×GL(G)-equivariant modules over the coordinate ring of determinantal varieties." Colloquium Mathematicae 76.2 (1998): 243-263. <http://eudml.org/doc/210563>.

@article{Weyman1998,
author = {Weyman, J.},
journal = {Colloquium Mathematicae},
keywords = {equivariant modules; Grothendieck group; desingularizations of the determinantal variety; push downs},
language = {eng},
number = {2},
pages = {243-263},
title = {The Grothendieck group of GL(F)×GL(G)-equivariant modules over the coordinate ring of determinantal varieties},
url = {http://eudml.org/doc/210563},
volume = {76},
year = {1998},
}

TY - JOUR
AU - Weyman, J.
TI - The Grothendieck group of GL(F)×GL(G)-equivariant modules over the coordinate ring of determinantal varieties
JO - Colloquium Mathematicae
PY - 1998
VL - 76
IS - 2
SP - 243
EP - 263
LA - eng
KW - equivariant modules; Grothendieck group; desingularizations of the determinantal variety; push downs
UR - http://eudml.org/doc/210563
ER -

References

top
  1. [A] K. Akin, On complexes relating Jacobi-Trudi identity with the Bernstein-Gelfand-Gelfand resolution, J. Algebra 117 (1988), 494-503. Zbl0668.20033
  2. [A-B-W] K. Akin, D. A. Buchsbaum and J. Weyman, Resolutions of determinantal ideals; the submaximal minors, Adv. Math. 39 (1981), 1-30. Zbl0474.14035
  3. [Ar] M. Artale, Syzygies of a certain family of generically imperfect modules, J. Algebra 167 (1994), 233-257. Zbl0809.13007
  4. [Bo] G. Boffi, The universal form of the Littlewood-Richardson rule, Adv. Math. 68 (1988), 40-63. Zbl0659.20035
  5. [B] D. Buchsbaum, Complexes associated with the minors of a matrix, Sympos. Math. 4 (1970), 255-283. 
  6. [B-E] D. Buchsbaum and D. Eisenbud, Generic free resolutions and a family of generically perfect ideals, Adv. Math. 18 (1975), 245-301. Zbl0336.13007
  7. [D] S. Donkin, Rational Representations of Algebraic Groups, Lecture Notes in Math. 1140, Springer, Berlin, 1985. Zbl0586.20017
  8. [J] J. Jantzen, Representations of Algebraic Groups, Pure and Appl. Math. 131, Academic Press, Boston, 1987. 
  9. [MD] I. G. MacDonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford, 1979. Zbl0487.20007
  10. [L] A. Lascoux, Syzygies des variétés déterminantales, Adv. Math. 30 (1978), 202-237. Zbl0394.14022
  11. [W] H. Weyl, The Classical Groups, Princeton Univ. Press, 1973 (8th edition). 
  12. [Z] A. Zelevinsky, Resolvents, dual pairs and character formulas, Funktsional. Anal. i Prilozhen. 21 (2) (1987), 74-75 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.