The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits

J. Klimek; W. Kraśkiewicz; J. Weyman

Colloquium Mathematicae (1998)

  • Volume: 78, Issue: 1, page 105-118
  • ISSN: 0010-1354

How to cite

top

Klimek, J., Kraśkiewicz, W., and Weyman, J.. "The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits." Colloquium Mathematicae 78.1 (1998): 105-118. <http://eudml.org/doc/210595>.

@article{Klimek1998,
author = {Klimek, J., Kraśkiewicz, W., Weyman, J.},
journal = {Colloquium Mathematicae},
keywords = {categories of graded finitely generated modules; complex connected reductive algebraic groups; coordinate rings; Grothendieck groups; Euler characters of sheaves; global sections of line bundles},
language = {eng},
number = {1},
pages = {105-118},
title = {The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits},
url = {http://eudml.org/doc/210595},
volume = {78},
year = {1998},
}

TY - JOUR
AU - Klimek, J.
AU - Kraśkiewicz, W.
AU - Weyman, J.
TI - The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits
JO - Colloquium Mathematicae
PY - 1998
VL - 78
IS - 1
SP - 105
EP - 118
LA - eng
KW - categories of graded finitely generated modules; complex connected reductive algebraic groups; coordinate rings; Grothendieck groups; Euler characters of sheaves; global sections of line bundles
UR - http://eudml.org/doc/210595
ER -

References

top
  1. [A] M. Aschbacher, The 27-dimensional module for E_6. I, Invent. Math. 89 (1987), 159-195. Zbl0629.20018
  2. [D] M. Demazure, A very simple proof of Bott's theorem, ibid. 33 (1976), 271-272. Zbl0383.14017
  3. [H-U] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity free actions, Math. Ann. 290 (1991), 565-619. Zbl0733.20019
  4. [I] J. Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997-1028. Zbl0217.36203
  5. [K] V. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213. Zbl0431.17007
  6. [W] J. Weyman, The Grothendieck group of GL(F)×GL(G)-equivariant modules over the coordinate ring of determinantal varietes, Colloq. Math. 76 (1998), 243-263. Zbl0945.13006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.