The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits
J. Klimek; W. Kraśkiewicz; J. Weyman
Colloquium Mathematicae (1998)
- Volume: 78, Issue: 1, page 105-118
- ISSN: 0010-1354
Access Full Article
topHow to cite
topKlimek, J., Kraśkiewicz, W., and Weyman, J.. "The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits." Colloquium Mathematicae 78.1 (1998): 105-118. <http://eudml.org/doc/210595>.
@article{Klimek1998,
author = {Klimek, J., Kraśkiewicz, W., Weyman, J.},
journal = {Colloquium Mathematicae},
keywords = {categories of graded finitely generated modules; complex connected reductive algebraic groups; coordinate rings; Grothendieck groups; Euler characters of sheaves; global sections of line bundles},
language = {eng},
number = {1},
pages = {105-118},
title = {The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits},
url = {http://eudml.org/doc/210595},
volume = {78},
year = {1998},
}
TY - JOUR
AU - Klimek, J.
AU - Kraśkiewicz, W.
AU - Weyman, J.
TI - The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits
JO - Colloquium Mathematicae
PY - 1998
VL - 78
IS - 1
SP - 105
EP - 118
LA - eng
KW - categories of graded finitely generated modules; complex connected reductive algebraic groups; coordinate rings; Grothendieck groups; Euler characters of sheaves; global sections of line bundles
UR - http://eudml.org/doc/210595
ER -
References
top- [A] M. Aschbacher, The 27-dimensional module for E_6. I, Invent. Math. 89 (1987), 159-195. Zbl0629.20018
- [D] M. Demazure, A very simple proof of Bott's theorem, ibid. 33 (1976), 271-272. Zbl0383.14017
- [H-U] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity free actions, Math. Ann. 290 (1991), 565-619. Zbl0733.20019
- [I] J. Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997-1028. Zbl0217.36203
- [K] V. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213. Zbl0431.17007
- [W] J. Weyman, The Grothendieck group of GL(F)×GL(G)-equivariant modules over the coordinate ring of determinantal varietes, Colloq. Math. 76 (1998), 243-263. Zbl0945.13006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.