The Local Duality for Homomorphisms and an Application to Pure Semisimple PI-Rings

Markus Schmidmeier

Colloquium Mathematicae (1998)

  • Volume: 77, Issue: 1, page 121-132
  • ISSN: 0010-1354

How to cite

top

Schmidmeier, Markus. "The Local Duality for Homomorphisms and an Application to Pure Semisimple PI-Rings." Colloquium Mathematicae 77.1 (1998): 121-132. <http://eudml.org/doc/210570>.

@article{Schmidmeier1998,
author = {Schmidmeier, Markus},
journal = {Colloquium Mathematicae},
keywords = {finite representation type; local duality; finite length modules; semilocal rings; perfect endomorphism rings},
language = {eng},
number = {1},
pages = {121-132},
title = {The Local Duality for Homomorphisms and an Application to Pure Semisimple PI-Rings},
url = {http://eudml.org/doc/210570},
volume = {77},
year = {1998},
}

TY - JOUR
AU - Schmidmeier, Markus
TI - The Local Duality for Homomorphisms and an Application to Pure Semisimple PI-Rings
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 1
SP - 121
EP - 132
LA - eng
KW - finite representation type; local duality; finite length modules; semilocal rings; perfect endomorphism rings
UR - http://eudml.org/doc/210570
ER -

References

top
  1. [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules 2nd ed., Grad. Texts in Math. 13, Springer, New York, 1992. Zbl0765.16001
  2. [2] M. Auslander, Representation theory of artin algebras I Comm. Algebra 1 (1974), 177-268. Zbl0285.16028
  3. [3] M. Auslander, Large modules over artin algebras in: Algebra, Topology and Category Theory, Academic Press, New York, 1976, 1-17. 
  4. [4] M. Auslander, Functors and morphisms determined by objects in: Representation Theory of Algebras, Lecture Notes in Pure Appl. Math. 37, Dekker, New York, 1978, 1-244. 
  5. [5] M. Auslander, Applications of morphisms determined by modules ibid., 245-327. 
  6. [6] M. Auslander and I. Reiten, On the representation type of triangular matrix rings J. London Math. Soc. (2) 12 (1976), 371-382. 
  7. [7] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1995. 
  8. [8] J.-E. Björk, Rings satisfying a minimum condition on principal ideals J. Reine Angew. Math. 236 (1969), 112-119. Zbl0175.03203
  9. [9] P. M. Cohn, Algebra 2 2nd ed., Wiley, Chichester, 1989. 
  10. [10] I. Herzog, A test for finite representation type J. Pure Appl. Algebra 95 (1994), 151-182. Zbl0814.16011
  11. [11] C. U. Jensen and H. Lenzing, Model-Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules Algebra Logic Appl. 2, Gordon and Breach, New York, 1989. 
  12. [12] H. Krause, Dualizing rings and a characterisation of finite representation type C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 507-510. Zbl0852.16008
  13. [13] M. Prest, Model Theory and Modules London Math. Soc. Lecture Note Ser. 130, Cambridge Univ. Press, Cambridge, 1988. 
  14. [14] C. M. Ringel and H. Tachikawa, QF-3 rings J. Reine Angew. Math. 272 (1975), 49-72. 
  15. [15] A. Rosenberg and D. Zelinsky, Finiteness of the injective hull Math. Z. 70 (1959), 372-380. Zbl0084.26505
  16. [16] M. Schmidmeier, Auslander-Reiten Köcher für artinsche Ringe mit Polynomidentität Dissertation Univ. München, 1996, 88 pp. 
  17. [17] M. Schmidmeier, A dichotomy for finite length modules induced by local duality Comm. Algebra 25 (1997), 1933-1944. Zbl0885.16010
  18. [18] M. Schmidmeier, Auslander-Reiten theory for artinian PI-rings J. Algebra, to appear. 
  19. [19] M. Schmidmeier, Endofinite modules over hereditary artinian PI-rings in: Proc. Conf. ICRA VIII, to appear. 
  20. [20] D. Simson, Functor categories in which every flat object is projective Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 375-380. Zbl0328.18005
  21. [21] D. Simson, Partial Coxeter functors and right pure semisimple hereditary rings J. Algebra 71 (1981), 195-218. Zbl0477.16014
  22. [22] D. Simson, Indecomposable modules over one-sided serial local rings and right pure semisimple rings Tsukuba J. Math. 7 (1983), 87-103. Zbl0525.16016
  23. [23] D. Simson, On right pure semisimple hereditary rings and an Artin problem J. Pure Appl. Algebra 104 (1995), 313-332. Zbl0848.16013
  24. [24] D. Simson, An Artin problem for division ring extensions and the pure semisimplicity conjecture I Arch. Math. (Basel) 66 (1996), 114-122. Zbl0873.16010
  25. [25] D. Simson, A class of potential counter-examples to the pure semisimplicity conjecture in: Proc. Conf. Algebra and Model Theory, Essen-Dresden, 1994 and 1995, Gordon and Breach, London, 1997, 345-373. Zbl0936.16010
  26. [26] B. Zimmermann-Huisgen and W. Zimmermann, On the sparsity of representations of rings of pure global dimension zero Trans. Amer. Math. Soc. 320 (1990), 695-711. Zbl0699.16019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.