The Local Duality for Homomorphisms and an Application to Pure Semisimple PI-Rings
Colloquium Mathematicae (1998)
- Volume: 77, Issue: 1, page 121-132
- ISSN: 0010-1354
Access Full Article
topHow to cite
topSchmidmeier, Markus. "The Local Duality for Homomorphisms and an Application to Pure Semisimple PI-Rings." Colloquium Mathematicae 77.1 (1998): 121-132. <http://eudml.org/doc/210570>.
@article{Schmidmeier1998,
author = {Schmidmeier, Markus},
journal = {Colloquium Mathematicae},
keywords = {finite representation type; local duality; finite length modules; semilocal rings; perfect endomorphism rings},
language = {eng},
number = {1},
pages = {121-132},
title = {The Local Duality for Homomorphisms and an Application to Pure Semisimple PI-Rings},
url = {http://eudml.org/doc/210570},
volume = {77},
year = {1998},
}
TY - JOUR
AU - Schmidmeier, Markus
TI - The Local Duality for Homomorphisms and an Application to Pure Semisimple PI-Rings
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 1
SP - 121
EP - 132
LA - eng
KW - finite representation type; local duality; finite length modules; semilocal rings; perfect endomorphism rings
UR - http://eudml.org/doc/210570
ER -
References
top- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules 2nd ed., Grad. Texts in Math. 13, Springer, New York, 1992. Zbl0765.16001
- [2] M. Auslander, Representation theory of artin algebras I Comm. Algebra 1 (1974), 177-268. Zbl0285.16028
- [3] M. Auslander, Large modules over artin algebras in: Algebra, Topology and Category Theory, Academic Press, New York, 1976, 1-17.
- [4] M. Auslander, Functors and morphisms determined by objects in: Representation Theory of Algebras, Lecture Notes in Pure Appl. Math. 37, Dekker, New York, 1978, 1-244.
- [5] M. Auslander, Applications of morphisms determined by modules ibid., 245-327.
- [6] M. Auslander and I. Reiten, On the representation type of triangular matrix rings J. London Math. Soc. (2) 12 (1976), 371-382.
- [7] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1995.
- [8] J.-E. Björk, Rings satisfying a minimum condition on principal ideals J. Reine Angew. Math. 236 (1969), 112-119. Zbl0175.03203
- [9] P. M. Cohn, Algebra 2 2nd ed., Wiley, Chichester, 1989.
- [10] I. Herzog, A test for finite representation type J. Pure Appl. Algebra 95 (1994), 151-182. Zbl0814.16011
- [11] C. U. Jensen and H. Lenzing, Model-Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules Algebra Logic Appl. 2, Gordon and Breach, New York, 1989.
- [12] H. Krause, Dualizing rings and a characterisation of finite representation type C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 507-510. Zbl0852.16008
- [13] M. Prest, Model Theory and Modules London Math. Soc. Lecture Note Ser. 130, Cambridge Univ. Press, Cambridge, 1988.
- [14] C. M. Ringel and H. Tachikawa, QF-3 rings J. Reine Angew. Math. 272 (1975), 49-72.
- [15] A. Rosenberg and D. Zelinsky, Finiteness of the injective hull Math. Z. 70 (1959), 372-380. Zbl0084.26505
- [16] M. Schmidmeier, Auslander-Reiten Köcher für artinsche Ringe mit Polynomidentität Dissertation Univ. München, 1996, 88 pp.
- [17] M. Schmidmeier, A dichotomy for finite length modules induced by local duality Comm. Algebra 25 (1997), 1933-1944. Zbl0885.16010
- [18] M. Schmidmeier, Auslander-Reiten theory for artinian PI-rings J. Algebra, to appear.
- [19] M. Schmidmeier, Endofinite modules over hereditary artinian PI-rings in: Proc. Conf. ICRA VIII, to appear.
- [20] D. Simson, Functor categories in which every flat object is projective Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 375-380. Zbl0328.18005
- [21] D. Simson, Partial Coxeter functors and right pure semisimple hereditary rings J. Algebra 71 (1981), 195-218. Zbl0477.16014
- [22] D. Simson, Indecomposable modules over one-sided serial local rings and right pure semisimple rings Tsukuba J. Math. 7 (1983), 87-103. Zbl0525.16016
- [23] D. Simson, On right pure semisimple hereditary rings and an Artin problem J. Pure Appl. Algebra 104 (1995), 313-332. Zbl0848.16013
- [24] D. Simson, An Artin problem for division ring extensions and the pure semisimplicity conjecture I Arch. Math. (Basel) 66 (1996), 114-122. Zbl0873.16010
- [25] D. Simson, A class of potential counter-examples to the pure semisimplicity conjecture in: Proc. Conf. Algebra and Model Theory, Essen-Dresden, 1994 and 1995, Gordon and Breach, London, 1997, 345-373. Zbl0936.16010
- [26] B. Zimmermann-Huisgen and W. Zimmermann, On the sparsity of representations of rings of pure global dimension zero Trans. Amer. Math. Soc. 320 (1990), 695-711. Zbl0699.16019
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.