A relatively free topological group that is not varietal free

Vladimir Pestov; Dmitri Shakhmatov

Colloquium Mathematicae (1998)

  • Volume: 77, Issue: 1, page 1-8
  • ISSN: 0010-1354

Abstract

top
Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.

How to cite

top

Pestov, Vladimir, and Shakhmatov, Dmitri. "A relatively free topological group that is not varietal free." Colloquium Mathematicae 77.1 (1998): 1-8. <http://eudml.org/doc/210574>.

@article{Pestov1998,
abstract = {Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.},
author = {Pestov, Vladimir, Shakhmatov, Dmitri},
journal = {Colloquium Mathematicae},
keywords = {relatively free topological group; variety of topological groups; free zero-dimensional topological group; varietal free topological group; topological groups; variety; algebraically free},
language = {eng},
number = {1},
pages = {1-8},
title = {A relatively free topological group that is not varietal free},
url = {http://eudml.org/doc/210574},
volume = {77},
year = {1998},
}

TY - JOUR
AU - Pestov, Vladimir
AU - Shakhmatov, Dmitri
TI - A relatively free topological group that is not varietal free
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 1
SP - 1
EP - 8
AB - Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.
LA - eng
KW - relatively free topological group; variety of topological groups; free zero-dimensional topological group; varietal free topological group; topological groups; variety; algebraically free
UR - http://eudml.org/doc/210574
ER -

References

top
  1. [1] A. V. Arhangel'skiĭ [A. V. Arkhangel'skiĭ], Any topological group is a quotient group of a zero-dimensional topological group, Soviet. Math. Dokl. 23 (1981), 615-618. 
  2. [2] A. V. Arhangel'skiĭ [A. V. Arkhangel'skiĭ], Classes of topological groups, Russian Math. Surveys 36 (1981), 151-174. 
  3. [3] M. S. Brooks, S. A. Morris and S. A. Saxon, Generating varieties of topological groups, Proc. Edinburgh Math. Soc. 18 (1973), 191-197. Zbl0263.22002
  4. [4] W. W. Comfort and J. van Mill, On the existence of free topological groups, Topology Appl. 29 (1988), 245-265. 
  5. [5] R. Engelking, General Topology, PWN, Warszawa, 1977. 
  6. [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, 2nd ed. Springer, 1979. Zbl0416.43001
  7. [7] K. H. Hofmann, An essay on free compact groups, in: Lecture Notes in Math. 915, Springer, 1982, 171-197. 
  8. [8] H. J. K. Junnila, Stratifiable pre-images of topological spaces, in: Topology (Budapest 1978), Colloq. Math. Soc. János Bolyai 23, North-Holland, 1980, 689-703. 
  9. [9] S. Mac Lane, Categories for the Working Mathematician, Grad. Texts in Math. 5, Springer, 1971. 
  10. [10] A. A. Markov, On free topological groups, Dokl. Akad. Nauk SSSR 31 (1941), 299-301 (in Russian). 
  11. [11] A. A. Markov, Three papers on topological groups, Amer. Math. Soc. Transl. 30 (1950), 120 pp. 
  12. [12] S. A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145-160. Zbl0172.31404
  13. [13] S. A. Morris, Varieties of topological groups and left adjoint functor, J. Austral. Math. Soc. 16 (1973), 220-227. Zbl0274.22003
  14. [14] S. A. Morris, Varieties of topological groups. A survey, Colloq. Math. 46 (1982), 147-165. Zbl0501.22002
  15. [15] S. A. Morris, Free abelian topological groups, in: Categorical Topology (Toledo, Ohio, 1983), Heldermann, 1984, 375-391. 
  16. [16] H. Neumann, Varieties of Groups, Ergeb. Math. Grenzgeb. 37, Springer, Berlin, 1967. Zbl0149.26704
  17. [17] V. G. Pestov, Neighbourhoods of unity in free topological groups, Moscow Univ. Math. Bull. 40 (1985), 8-12. Zbl0592.22002
  18. [18] V. G. Pestov, Universal arrows to forgetful functors from categories of topological algebra, Bull. Austral. Math. Soc. 48 (1993), 209-249. Zbl0784.18002
  19. [19] P. Samuel, On universal mappings and free topological groups, Bull. Amer. Math. Soc. 54 (1948), 591-598. Zbl0031.41702
  20. [20] D. B. Shakhmatov, Zerodimensionality of free topological groups and topological groups with noncoinciding dimensions, Bull. Polish Acad. Sci. Math. 37 (1989), 497-506. Zbl0759.54023
  21. [21] D. B. Shakhmatov, Imbeddings into topological groups preserving dimensions, Topology Appl. 36 (1990), 181-204. Zbl0709.22001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.