A recipe for finding open subsets of vector spaces with a good quotient
A. BiaŁynicki-Birula; J. Święcicka
Colloquium Mathematicae (1998)
- Volume: 77, Issue: 1, page 97-114
- ISSN: 0010-1354
Access Full Article
topHow to cite
topReferences
top- [BBŚw1] A. Białynicki-Birula and J. Święcicka, A reduction theorem for existence of good quotients, Amer. J. Math. 113 (1990), 189-201. Zbl0741.14031
- [BBŚw2] A. Białynicki-Birula and J. Święcicka,Open subsets in projective spaces with a good quotient by an action of a reductive group, Transformation Groups 1 (1996), 153-186. Zbl0912.14016
- [BBŚw3] A. Białynicki-Birula and J. Święcicka,Open subsets in projective spaces with a good quotient by an action of a reductive group,Three theorems on existence of good quotients, Math. Ann. 307 (1997), 143-149. Zbl0870.14034
- [BBŚw4] A. Białynicki-Birula and J. Święcicka,Open subsets in projective spaces with a good quotient by an action of a reductive group,Three theorems on existence of good quotients,A combinatorial approach to geometric invariant theory, in Proc. Sophus Lie Memorial Conf. (Oslo 1992), O. A. Laudal and B. Jahren (eds.), Scand. Univ. Press, Oslo, 115-127.
- [C] D. A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 17-50. Zbl0846.14032
- [GIT] D. Mumford, Geometric Invariant Theory, Ergeb. Math. Grenzgeb. 34, Springer, 1982.
- [K] D. Knutson, Algebraic Spaces, Lecture Notes in Math. 203, Springer, 1971. Zbl0221.14001
- [N] M. Nagata, Note on orbit spaces, Osaka Math. J. 14 (1962), 21-31. Zbl0103.38303
- [Oda] T. Oda, Convex Bodies and Algebraic Geometry, Springer, 1985. Zbl0628.52002
- [S] C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. of Math. 95 (1972), 511-556. Zbl0241.14024