Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups

Jean-Marc Drézet[1]; Günther Trautmann[2]

  • [1] Institut de Mathématiques, UMR 7586 du CNRS, Aile 45-55, 5ème étage, 2 place Jussieu, 75251 Paris Cedex 05 (France)
  • [2] Universität Kaiserslautern, Fachbereich Mathematik, Erwin-Schrödinger Strasse, 67663 Kaiserslautern (Allemagne)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 1, page 107-192
  • ISSN: 0373-0956

Abstract

top
We extend the methods of geometric invariant theory to actions of non–reductive groups in the case of homomorphisms between decomposable sheaves whose automorphism groups are non–reductive. Given a linearization of the natural action of the group Aut ( E ) × Aut ( F ) on Hom(E,F), a homomorphism is called stable if its orbit with respect to the unipotent radical is contained in the stable locus with respect to the natural reductive subgroup of the automorphism group. We encounter effective numerical conditions for a linearization such that the corresponding open set of semi- stable homomorphisms admits a good and projective quotient in the sense of geometric invariant theory, and that this quotient is in addition a geometric quotient on the set of stable homomorphisms.

How to cite

top

Drézet, Jean-Marc, and Trautmann, Günther. "Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups." Annales de l’institut Fourier 53.1 (2003): 107-192. <http://eudml.org/doc/116032>.

@article{Drézet2003,
abstract = {We extend the methods of geometric invariant theory to actions of non–reductive groups in the case of homomorphisms between decomposable sheaves whose automorphism groups are non–reductive. Given a linearization of the natural action of the group $\{\rm Aut\}(E)\times \{\rm Aut\}(F)$ on Hom(E,F), a homomorphism is called stable if its orbit with respect to the unipotent radical is contained in the stable locus with respect to the natural reductive subgroup of the automorphism group. We encounter effective numerical conditions for a linearization such that the corresponding open set of semi- stable homomorphisms admits a good and projective quotient in the sense of geometric invariant theory, and that this quotient is in addition a geometric quotient on the set of stable homomorphisms.},
affiliation = {Institut de Mathématiques, UMR 7586 du CNRS, Aile 45-55, 5ème étage, 2 place Jussieu, 75251 Paris Cedex 05 (France); Universität Kaiserslautern, Fachbereich Mathematik, Erwin-Schrödinger Strasse, 67663 Kaiserslautern (Allemagne)},
author = {Drézet, Jean-Marc, Trautmann, Günther},
journal = {Annales de l’institut Fourier},
keywords = {algebraic quotients; good quotients; non-reductive groups; moduli spaces; geometric invariant theory; actions on coherent sheaves; polarization; geometric quotient},
language = {eng},
number = {1},
pages = {107-192},
publisher = {Association des Annales de l'Institut Fourier},
title = {Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups},
url = {http://eudml.org/doc/116032},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Drézet, Jean-Marc
AU - Trautmann, Günther
TI - Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 1
SP - 107
EP - 192
AB - We extend the methods of geometric invariant theory to actions of non–reductive groups in the case of homomorphisms between decomposable sheaves whose automorphism groups are non–reductive. Given a linearization of the natural action of the group ${\rm Aut}(E)\times {\rm Aut}(F)$ on Hom(E,F), a homomorphism is called stable if its orbit with respect to the unipotent radical is contained in the stable locus with respect to the natural reductive subgroup of the automorphism group. We encounter effective numerical conditions for a linearization such that the corresponding open set of semi- stable homomorphisms admits a good and projective quotient in the sense of geometric invariant theory, and that this quotient is in addition a geometric quotient on the set of stable homomorphisms.
LA - eng
KW - algebraic quotients; good quotients; non-reductive groups; moduli spaces; geometric invariant theory; actions on coherent sheaves; polarization; geometric quotient
UR - http://eudml.org/doc/116032
ER -

References

top
  1. A. Bialynicki-Birula, J. Świȩcika, A recipe for finding open subsets of vector spaces with a good quotient, Colloq. Math. 77 (1998), 97-114 Zbl0947.14027MR1622776
  2. A. Bialynicki-Birula, J. Świȩcika, Open subsets of projective space with a good quotient by an action of a reductive group, Transf. Groups 1 (1996), 153-185 Zbl0912.14016MR1417709
  3. J. Dixmier, Quelques aspects de la théorie des invariants, (1989), Gazette, Soc. Math. de France Zbl0708.14008MR1035388
  4. J. Dixmier, M. Raynaud, Sur le quotient d'une variété algébrique par un groupe algébrique, Advances in Math., Suppl. Studies vol. 7A (1981), 327-344 Zbl0473.14019MR634245
  5. H. Dolgachev, Yi Hu, Variation of Geometric Invariant Theory Quotients Zbl1001.14018
  6. J.-M. Drézet, Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur 2 ( ) , J. reine angew. Math. 380 (1987), 14-58 Zbl0613.14013MR916199
  7. J.-M. Drézet, Cohomologie des variétés de modules de hauteur nulle, Math. Ann. 281 (1988), 43-85 Zbl0644.14005MR944602
  8. J.-M. Drézet, Variétés de modules extrémales de faisceaux semi-stables sur 2 ( ) , Math. Ann. 290 (1991), 727-770 Zbl0755.14005MR1119949
  9. J.-M. Drézet, Exceptional bundles and moduli spaces of stables sheaves on n , Vector Bundles in Algebraic Geometry, Proceedings Durham 1993 208 (1995), Cambridge Zbl0860.14018
  10. J.-M. Drézet, Quotients algébriques par des groupes non réductifs et variétés de modules de complexes, Intern. J. Math. 9 (1998), 769-819 Zbl0947.14009MR1651069
  11. J.-M. Drézet, Variétés de modules alternatives, Ann. Inst. Fourier 49 (1999), 57-139 Zbl0923.14005MR1688156
  12. J.-M. Drézet, Espaces abstraits de morphismes et mutations, J. reine angew. Math. 518 (2000), 41-93 Zbl0937.14030MR1739409
  13. J.-M. Drézet, J. Le Potier, Fibrés stables et fibrés exceptionnels sur 2 ( ) , Ann. École Norm. Sup. 18 (1985), 193-244 Zbl0586.14007MR816365
  14. G. Ellingsrud, R. Piene, S.A. StrØmme, On the variety of nets of quadrics defining twisted cubic curves, Space Curves 1266 (1987), Springer-Verlag Zbl0659.14027
  15. G. Ellingsrud, S.A. StrØmme, On the Chow ring of a geometric quotient, Ann. of Math. 130 (1989), 159-187 Zbl0716.14002MR1005610
  16. A. Fauntleroy, Geometric invariant theory for general algebraic groups, Comp. Math. 55 (1985), 63-87 Zbl0577.14037MR791647
  17. A. Fauntleroy, Invariant theory for linear algebraic groups II, Comp. Math. 68 (1983), 23-29 Zbl0683.14011MR962502
  18. H.G. Freiermuth, On the moduli space M p ( 3 ) of semi-stable sheaves on 3 with Hilbert polynomial P ( m ) = 3 m + 1 , (2000) 
  19. G.-M. Greuel, G. Pfister, Geometric quotients of unipotent group actions, Proc. Lond. Math. Soc. 67 (1993), 75-105 Zbl0806.14034MR1218121
  20. B.V. Karpov, Semi-stable sheaves on a two-dimensional quadric and Kronecker modules, Math. Izvestiya AMS Transl. 40 (1993), 33-66 Zbl0785.14006MR1162633
  21. A. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford 45 (1994), 515-530 Zbl0837.16005MR1315461
  22. J. KollÁr, Quotient spaces modulo algebraic groups, Ann. of Math. 145 (1997), 33-79 Zbl0881.14017MR1432036
  23. J. Le Potier, Systèmes cohérents et structures de niveau, 214 (1993), Soc. Math. France Zbl0881.14008MR1244404
  24. J. Le Potier, Faisceaux semi-stables de dimension 1 sur le plan projectif, Rev. Roumaine Math. Pures Appl. 318 (1993), 635-678 Zbl0815.14029MR1263210
  25. R.M. Miró-Roig, Some moduli spaces for rank 2 stable reflexive sheaves on 3 , Trans. Amer. Math. Soc. 299 (1987), 699-717 Zbl0617.14010MR869229
  26. R.M. Miró-Roig, G. Trautmann, The moduli scheme M ( 0 , 2 , 4 ) over 3 , Math. Z. 216 (1994), 283-315 Zbl0837.14008MR1278426
  27. D. Mumford, J. Fogarty, Geometric invariant theory, (1982), Springer, Berlin-Heidelberg-New York Zbl0504.14008MR719371
  28. M. Nagata, On the 14th problem of Hilbert, Proc. Intern. Cong. Math. 1958, Edinburgh (1960), 459-462, Cambridge University Press Zbl0127.26302
  29. P.E. Newstead, Introduction to moduli problems and orbit spaces, 51 (1978), Springer, Berlin-Heidelberg-New York Zbl0411.14003MR546290
  30. C. Okonek, Moduli extremer reflexiver Garben auf n , J. reine angew. Math. 338 (1983), 183-194 Zbl0491.14010MR684022
  31. V.L. Popov, E.G. Vinberg, Invariant theory, Algebraic Geometry, IV: Linear algebraic groups, invariant theory vol. 55 (1994), 123-278, Springer-Verlag Zbl0789.14008
  32. M. Reid, What is a flip, (1992) 
  33. A. Schofield, General representations of quivers, Proc. Lond. Math. Soc. 65 (1992), 46-64 Zbl0795.16008MR1162487
  34. C.S. Seshadri, Mumford’s conjecture for G L ( 2 ) and applications, Proc. Int. Colloq. on Algebraic Geometry vol. 347 (1968), Oxford Univ. Press Zbl0194.51702
  35. M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), 691-723 Zbl0874.14042MR1333296
  36. E.N. TjØtta, Rational curves on the space of determinantal nets of conics, (1998) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.