Inégalités de Sobolev-Orlicz non-uniformes

Gilles Carron

Colloquium Mathematicae (1998)

  • Volume: 77, Issue: 2, page 163-178
  • ISSN: 0010-1354

How to cite

top

Carron, Gilles. "Inégalités de Sobolev-Orlicz non-uniformes." Colloquium Mathematicae 77.2 (1998): 163-178. <http://eudml.org/doc/210581>.

@article{Carron1998,
author = {Carron, Gilles},
journal = {Colloquium Mathematicae},
keywords = {heat kernel; Sobolev inequalities; Orlicz spaces; complete Riemannian manifold; Orlicz function; Luxemburg norm; Sobolev-Orlicz inequality},
language = {eng},
number = {2},
pages = {163-178},
title = {Inégalités de Sobolev-Orlicz non-uniformes},
url = {http://eudml.org/doc/210581},
volume = {77},
year = {1998},
}

TY - JOUR
AU - Carron, Gilles
TI - Inégalités de Sobolev-Orlicz non-uniformes
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 2
SP - 163
EP - 178
LA - eng
KW - heat kernel; Sobolev inequalities; Orlicz spaces; complete Riemannian manifold; Orlicz function; Luxemburg norm; Sobolev-Orlicz inequality
UR - http://eudml.org/doc/210581
ER -

References

top
  1. [A] A. Ancona, Théorie du potentiel sur des graphes et des variétés, Lecture Notes in Math. 1427, Springer, 1990. 
  2. [C1] G. Carron, Inégalités isopérimétriques de Faber-Krahn et conséquences, dans : Actes de la Table Ronde de Géométrie Différentielle en l'Honneur de M. Berger (Luminy, 1992), Sémin. Congr. 1, Soc. Math. France, 1996, 205-232. 
  3. [C2] G. Carron, Inégalités de Faber-Krahn et inclusion de Sobolev-Orlicz, Potential Anal. 7 (1997), 555-575. 
  4. [C3] G. Carron, Une suite exacte en L 2 -cohomologie, Duke Math. J., à paraître. 
  5. [C4] G. Carron, L 2 -cohomologie et inégalités de Sobolev, prépublication n°306 de l’Institut J. Fourier, 1994. 
  6. [C5] G. Carron, Inégalité de Hardy sur les variétés riemanniennes, J. Math. Pures Appl. 76 (1997), 883-891. 
  7. [C-G-T] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15-53. Zbl0493.53035
  8. [C-S.C] T. Coulhon et L. Saloff-Coste, Variétés riemanniennes isométriques à l'in- fini, Rev. Mat. Iberoamericana 11 (1995), 687-726. 
  9. [D] E. B. Davies, Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. 55 (1997), 105-125. Zbl0879.35064
  10. [G1] A. A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana 10 (1994), 395-452. 
  11. [G2] A. A. Grigor'yan, On the existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds, Math. USSR-Sb. 56 (1987), 349-357. 
  12. [L-Y] P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201. Zbl0611.58045
  13. [L] J. Lott, L 2 -cohomology of geometrically infinite hyperbolic 3-manifolds, Geom. Funct. Anal. 7 (1997), 81-119. Zbl0873.57014
  14. [Mu] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983. Zbl0557.46020
  15. [S] E. M. Stein, Topics in Harmonic Analysis Related to Littlewood-Paley Theory, Ann. of Math. Stud. 63, Princeton Univ. Press, 1970. Zbl0193.10502
  16. [V] N. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), 240-260. Zbl0608.47047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.