Flows on Invariant Subsets and Compactifications of a Locally Compact Group

A. Lau; P. Milnes; J. Pym

Colloquium Mathematicae (1998)

  • Volume: 78, Issue: 2, page 267-281
  • ISSN: 0010-1354

How to cite

top

Lau, A., Milnes, P., and Pym, J.. "Flows on Invariant Subsets and Compactifications of a Locally Compact Group." Colloquium Mathematicae 78.2 (1998): 267-281. <http://eudml.org/doc/210614>.

@article{Lau1998,
author = {Lau, A., Milnes, P., Pym, J.},
journal = {Colloquium Mathematicae},
keywords = {flow; distal; almost periodic; left uniformly continuous function; subgroup; locally compact group; IN group; compactification; enveloping semigroup},
language = {eng},
number = {2},
pages = {267-281},
title = {Flows on Invariant Subsets and Compactifications of a Locally Compact Group},
url = {http://eudml.org/doc/210614},
volume = {78},
year = {1998},
}

TY - JOUR
AU - Lau, A.
AU - Milnes, P.
AU - Pym, J.
TI - Flows on Invariant Subsets and Compactifications of a Locally Compact Group
JO - Colloquium Mathematicae
PY - 1998
VL - 78
IS - 2
SP - 267
EP - 281
LA - eng
KW - flow; distal; almost periodic; left uniformly continuous function; subgroup; locally compact group; IN group; compactification; enveloping semigroup
UR - http://eudml.org/doc/210614
ER -

References

top
  1. [1] J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on Semigroups, Wiley, New York, 1989. Zbl0727.22001
  2. [2] R. Ellis, Distal transformation groups, Pacific J. Math. 9 (1958), 401-405. Zbl0092.39702
  3. [3] S. Glasner, Proximal Flows, Lecture Notes in Math. 517, Springer, Berlin, 1976. 
  4. [4] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, Berlin, 1963. Zbl0115.10603
  5. [5] A. W. Knapp, Decomposition theorem for bounded uniformly continuous functions on a group, Amer. J. Math. 88 (1966), 902-914. Zbl0156.14501
  6. [6] A. T. Lau, P. Milnes and J. Pym, Compactifications of locally compact groups and quotients, Math. Proc. Cambridge Philos. Soc. 116 (1994), 451-463. Zbl0856.22004
  7. [7] J. D. Lawson, Flows and compactifications, J. London Math. Soc. 46 (1992), 349-363. 
  8. [8] J. Liukkonen, Dual spaces of locally compact groups with precompact conjugacy classes, Trans. Amer. Math. Soc. 180 (1973), 85-108 . Zbl0292.22008
  9. [9] T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), 683-741. Zbl0396.22001
  10. [10] T. W. Palmer, Banach Algebras and the General Theory of * -Algebras, Cambridge Univ. Press, Cambridge, 1994. Zbl0809.46052
  11. [11] J. Rosenblatt, A distal property of groups and the growth of connected locally compact groups, Mathematika 26 (1979), 94-98. Zbl0402.22002
  12. [12] W. Ruppert, On semigroup compactifications of topological groups, Proc. Roy. Irish Acad. Sect. A 79 (1979), 179-200. Zbl0435.22002
  13. [13] W. A. Veech, Topological dynamics, Bull. Amer. Math. Soc. 83 (1977), 775-830. Zbl0384.28018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.