Flows on Invariant Subsets and Compactifications of a Locally Compact Group

A. Lau; P. Milnes; J. Pym

Colloquium Mathematicae (1998)

  • Volume: 78, Issue: 2, page 267-281
  • ISSN: 0010-1354

How to cite

top

Lau, A., Milnes, P., and Pym, J.. "Flows on Invariant Subsets and Compactifications of a Locally Compact Group." Colloquium Mathematicae 78.2 (1998): 267-281. <http://eudml.org/doc/210614>.

@article{Lau1998,
author = {Lau, A., Milnes, P., Pym, J.},
journal = {Colloquium Mathematicae},
keywords = {flow; distal; almost periodic; left uniformly continuous function; subgroup; locally compact group; IN group; compactification; enveloping semigroup},
language = {eng},
number = {2},
pages = {267-281},
title = {Flows on Invariant Subsets and Compactifications of a Locally Compact Group},
url = {http://eudml.org/doc/210614},
volume = {78},
year = {1998},
}

TY - JOUR
AU - Lau, A.
AU - Milnes, P.
AU - Pym, J.
TI - Flows on Invariant Subsets and Compactifications of a Locally Compact Group
JO - Colloquium Mathematicae
PY - 1998
VL - 78
IS - 2
SP - 267
EP - 281
LA - eng
KW - flow; distal; almost periodic; left uniformly continuous function; subgroup; locally compact group; IN group; compactification; enveloping semigroup
UR - http://eudml.org/doc/210614
ER -

References

top
  1. [1] J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on Semigroups, Wiley, New York, 1989. Zbl0727.22001
  2. [2] R. Ellis, Distal transformation groups, Pacific J. Math. 9 (1958), 401-405. Zbl0092.39702
  3. [3] S. Glasner, Proximal Flows, Lecture Notes in Math. 517, Springer, Berlin, 1976. 
  4. [4] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, Berlin, 1963. Zbl0115.10603
  5. [5] A. W. Knapp, Decomposition theorem for bounded uniformly continuous functions on a group, Amer. J. Math. 88 (1966), 902-914. Zbl0156.14501
  6. [6] A. T. Lau, P. Milnes and J. Pym, Compactifications of locally compact groups and quotients, Math. Proc. Cambridge Philos. Soc. 116 (1994), 451-463. Zbl0856.22004
  7. [7] J. D. Lawson, Flows and compactifications, J. London Math. Soc. 46 (1992), 349-363. 
  8. [8] J. Liukkonen, Dual spaces of locally compact groups with precompact conjugacy classes, Trans. Amer. Math. Soc. 180 (1973), 85-108 . Zbl0292.22008
  9. [9] T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), 683-741. Zbl0396.22001
  10. [10] T. W. Palmer, Banach Algebras and the General Theory of * -Algebras, Cambridge Univ. Press, Cambridge, 1994. Zbl0809.46052
  11. [11] J. Rosenblatt, A distal property of groups and the growth of connected locally compact groups, Mathematika 26 (1979), 94-98. Zbl0402.22002
  12. [12] W. Ruppert, On semigroup compactifications of topological groups, Proc. Roy. Irish Acad. Sect. A 79 (1979), 179-200. Zbl0435.22002
  13. [13] W. A. Veech, Topological dynamics, Bull. Amer. Math. Soc. 83 (1977), 775-830. Zbl0384.28018

NotesEmbed ?

top

You must be logged in to post comments.