Charge transfer scatteringin a constant electric field

Lech Zieliński

Colloquium Mathematicae (1999)

  • Volume: 79, Issue: 1, page 37-61
  • ISSN: 0010-1354

Abstract

top
We prove the asymptotic completeness of the quantum scattering for a Stark Hamiltonian with a time dependent interaction potential, created by N classical particles moving in a constant electric field.

How to cite

top

Zieliński, Lech. "Charge transfer scatteringin a constant electric field." Colloquium Mathematicae 79.1 (1999): 37-61. <http://eudml.org/doc/210626>.

@article{Zieliński1999,
abstract = {We prove the asymptotic completeness of the quantum scattering for a Stark Hamiltonian with a time dependent interaction potential, created by N classical particles moving in a constant electric field.},
author = {Zieliński, Lech},
journal = {Colloquium Mathematicae},
keywords = {asymptotic completeness; quantum scattering; Stark Hamiltonian; classical particles moving in a constant electric field},
language = {eng},
number = {1},
pages = {37-61},
title = {Charge transfer scatteringin a constant electric field},
url = {http://eudml.org/doc/210626},
volume = {79},
year = {1999},
}

TY - JOUR
AU - Zieliński, Lech
TI - Charge transfer scatteringin a constant electric field
JO - Colloquium Mathematicae
PY - 1999
VL - 79
IS - 1
SP - 37
EP - 61
AB - We prove the asymptotic completeness of the quantum scattering for a Stark Hamiltonian with a time dependent interaction potential, created by N classical particles moving in a constant electric field.
LA - eng
KW - asymptotic completeness; quantum scattering; Stark Hamiltonian; classical particles moving in a constant electric field
UR - http://eudml.org/doc/210626
ER -

References

top
  1. [1] T. Adachi and H. Tamura, Asymptotic completeness for long range many-particle systems with Stark effect, J. Math. Sci. Univ. Tokyo 2 (1995), 77-116. Zbl0843.35086
  2. [2] T. Adachi and H. Tamura, Asymptotic completeness for long range many-particle systems with Stark effect. II, Comm. Math. Phys. 174 (1996), 537-559. Zbl0849.35112
  3. [3] W. O. Amrein, A. Boutet de Monvel and V. Georgescu, L p -inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, 153-168. 
  4. [4] W. O. Amrein, A. Boutet de Monvel and V. Georgescu, C 0 -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Birkhäuser, 1996. Zbl0962.47500
  5. [5] J. E. Avron and I. W. Herbst, Spectral and scattering theory for Schrödinger operators related to Stark effect, Comm. Math. Phys. 52 (1977), 239-254. Zbl0351.47007
  6. [6] J. Dereziński and C. Gérard, Asymptotic Completeness of N-Particle Systems, Springer, 1996. 
  7. [7] G. M. Graf, Phase space analysis of the charge transfer model, Helv. Phys. Acta 63 (1990), 107-138. Zbl0741.35050
  8. [8] G. M. Graf, Asymptotic completeness for N-body short-range quantum systems: a new proof, Comm. Math. Phys. 123 (1990), 107-138. 
  9. [9] G. M. Graf, A remark on long-range Stark scattering, Helv. Phys. Acta 64 (1991), 1167-1174. 
  10. [10] G. A. Hagedorn, Asymptotic completeness for the impact parameter approximation to the three particle scattering, Ann. Inst. H. Poincaré, Sect. A 36 (1982), 19-40. Zbl0482.47003
  11. [11] B. Helffer et J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, in: Lecture Notes in Phys. 345, Springer, 1989, 118-197. Zbl0699.35189
  12. [12] I. W. Herbst, Unitary equivalence of Stark effect Hamiltonians, Math. Z. 155 (1977), 55-70. Zbl0338.47009
  13. [13] I. W. Herbst, J. S. Mοller and E. Skibsted, Spectral analysis of N-body Stark Hamiltonians, Comm. Math. Phys. 174 (1995), 261-294. Zbl0846.35095
  14. [14] I. W. Herbst, J. S. Mοller and E. Skibsted, Asymptotic completeness for N-body Stark Hamiltonians, ibid. 174 (1996), 509-535. Zbl0846.35096
  15. [15] A. Jensen, Scattering theory for Stark Hamiltonians, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994), 599-651. Zbl0827.47006
  16. [16] A. Jensen and T. Ozawa, Existence and non-existence results for wave operators for perturbations of the Laplacian, Rev. Math. Phys. 5 (1993), 601-629. Zbl0831.35145
  17. [17] A. Jensen and K. Yajima, On the long range scattering for Stark Hamiltonians, J. Reine Angew. Math. 420 (1991), 179-193. Zbl0736.35077
  18. [18] E. L. Korotyaev, On the scattering theory of several particles in an external electric field, Math. USSR-Sb. 60 (1988), 177-196. 
  19. [19] P. A. Perry, Scattering Theory by the Enss Method, Math. Rep. 1, Harwood, 1983, 1-347. Zbl0529.35004
  20. [20] I. M. Sigal, Stark effect in multielectron systems: non-existence of bound states, Comm. Math. Phys. 122 (1989), 1-22. Zbl0684.35079
  21. [21] I. M. Sigal and A. Soffer, The N-particle scattering problem: asymptotic completeness for the short-range quantum systems, Ann. of Math. 125 (1987), 35-108. 
  22. [22] H. Tamura, Scattering theory for N-particle systems with Stark effect: asymptotic completeness, RIMS Kyoto Univ. 29 (1993), 869-884. Zbl0831.35124
  23. [23] D. A. White, The Stark effect and long-range scattering in two Hilbert spaces, Indiana Univ. Math. J. 39 (1990), 517-546. Zbl0695.35144
  24. [24] D. A. White, Modified wave operators and Stark Hamiltonians, Duke Math. J. 68 (1992), 83-100. Zbl0766.35033
  25. [25] U. Wüller, Geometric methods in scattering theory of the charge transfer model, ibid. 62 (1991), 273-313. Zbl0732.35055
  26. [26] K. Yajima, A multi-channel scattering theory for some time dependent hamiltonians, Charge Transfer Problem, Comm. Math. Phys. 75 (1980), 153-178. Zbl0437.47008
  27. [27] K. Yajima, Spectral and scattering theory for Schrödinger operators with Stark effect, J. Fac. Sci. Univ. Tokyo Sect. IA 26 (1979), 377-390. Zbl0429.35027
  28. [28] K. Yajima, Spectral and scattering theory for Schrödinger operators with Stark effect, II, ibid. 28 (1981), 1-15. 
  29. [29] L. Zieliński, Complétude asymptotique pour un modèle du transfert de charge, Ann. Inst. H. Poincaré Phys. Théor. 58 (1993), 363-411. 
  30. [30] L. Zieliński, Scattering for a dispersive charge transfer model, ibid. 65 (1997), 339-386. Zbl0887.35110
  31. [31] L. Zieliński, Asymptotic completeness for multiparticle dispersive charge transfer model, J. Funct. Anal. 150 (1997), 453-470. Zbl0891.35134
  32. [32] L. Zieliński, Dispersive charge transfer model with long range interactions, J. Math. Anal. Appl. 217 (1998), 43-71. Zbl0913.35112
  33. [33] J. Zorbas, Scattering theory for Stark Hamiltonians involving long range potentials, J. Math. Phys. 19 (1978), 577-580. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.