Charge transfer scatteringin a constant electric field
Colloquium Mathematicae (1999)
- Volume: 79, Issue: 1, page 37-61
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topZieliński, Lech. "Charge transfer scatteringin a constant electric field." Colloquium Mathematicae 79.1 (1999): 37-61. <http://eudml.org/doc/210626>.
@article{Zieliński1999,
abstract = {We prove the asymptotic completeness of the quantum scattering for a Stark Hamiltonian with a time dependent interaction potential, created by N classical particles moving in a constant electric field.},
author = {Zieliński, Lech},
journal = {Colloquium Mathematicae},
keywords = {asymptotic completeness; quantum scattering; Stark Hamiltonian; classical particles moving in a constant electric field},
language = {eng},
number = {1},
pages = {37-61},
title = {Charge transfer scatteringin a constant electric field},
url = {http://eudml.org/doc/210626},
volume = {79},
year = {1999},
}
TY - JOUR
AU - Zieliński, Lech
TI - Charge transfer scatteringin a constant electric field
JO - Colloquium Mathematicae
PY - 1999
VL - 79
IS - 1
SP - 37
EP - 61
AB - We prove the asymptotic completeness of the quantum scattering for a Stark Hamiltonian with a time dependent interaction potential, created by N classical particles moving in a constant electric field.
LA - eng
KW - asymptotic completeness; quantum scattering; Stark Hamiltonian; classical particles moving in a constant electric field
UR - http://eudml.org/doc/210626
ER -
References
top- [1] T. Adachi and H. Tamura, Asymptotic completeness for long range many-particle systems with Stark effect, J. Math. Sci. Univ. Tokyo 2 (1995), 77-116. Zbl0843.35086
- [2] T. Adachi and H. Tamura, Asymptotic completeness for long range many-particle systems with Stark effect. II, Comm. Math. Phys. 174 (1996), 537-559. Zbl0849.35112
- [3] W. O. Amrein, A. Boutet de Monvel and V. Georgescu, -inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, 153-168.
- [4] W. O. Amrein, A. Boutet de Monvel and V. Georgescu, -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Birkhäuser, 1996. Zbl0962.47500
- [5] J. E. Avron and I. W. Herbst, Spectral and scattering theory for Schrödinger operators related to Stark effect, Comm. Math. Phys. 52 (1977), 239-254. Zbl0351.47007
- [6] J. Dereziński and C. Gérard, Asymptotic Completeness of N-Particle Systems, Springer, 1996.
- [7] G. M. Graf, Phase space analysis of the charge transfer model, Helv. Phys. Acta 63 (1990), 107-138. Zbl0741.35050
- [8] G. M. Graf, Asymptotic completeness for N-body short-range quantum systems: a new proof, Comm. Math. Phys. 123 (1990), 107-138.
- [9] G. M. Graf, A remark on long-range Stark scattering, Helv. Phys. Acta 64 (1991), 1167-1174.
- [10] G. A. Hagedorn, Asymptotic completeness for the impact parameter approximation to the three particle scattering, Ann. Inst. H. Poincaré, Sect. A 36 (1982), 19-40. Zbl0482.47003
- [11] B. Helffer et J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, in: Lecture Notes in Phys. 345, Springer, 1989, 118-197. Zbl0699.35189
- [12] I. W. Herbst, Unitary equivalence of Stark effect Hamiltonians, Math. Z. 155 (1977), 55-70. Zbl0338.47009
- [13] I. W. Herbst, J. S. Mοller and E. Skibsted, Spectral analysis of N-body Stark Hamiltonians, Comm. Math. Phys. 174 (1995), 261-294. Zbl0846.35095
- [14] I. W. Herbst, J. S. Mοller and E. Skibsted, Asymptotic completeness for N-body Stark Hamiltonians, ibid. 174 (1996), 509-535. Zbl0846.35096
- [15] A. Jensen, Scattering theory for Stark Hamiltonians, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994), 599-651. Zbl0827.47006
- [16] A. Jensen and T. Ozawa, Existence and non-existence results for wave operators for perturbations of the Laplacian, Rev. Math. Phys. 5 (1993), 601-629. Zbl0831.35145
- [17] A. Jensen and K. Yajima, On the long range scattering for Stark Hamiltonians, J. Reine Angew. Math. 420 (1991), 179-193. Zbl0736.35077
- [18] E. L. Korotyaev, On the scattering theory of several particles in an external electric field, Math. USSR-Sb. 60 (1988), 177-196.
- [19] P. A. Perry, Scattering Theory by the Enss Method, Math. Rep. 1, Harwood, 1983, 1-347. Zbl0529.35004
- [20] I. M. Sigal, Stark effect in multielectron systems: non-existence of bound states, Comm. Math. Phys. 122 (1989), 1-22. Zbl0684.35079
- [21] I. M. Sigal and A. Soffer, The N-particle scattering problem: asymptotic completeness for the short-range quantum systems, Ann. of Math. 125 (1987), 35-108.
- [22] H. Tamura, Scattering theory for N-particle systems with Stark effect: asymptotic completeness, RIMS Kyoto Univ. 29 (1993), 869-884. Zbl0831.35124
- [23] D. A. White, The Stark effect and long-range scattering in two Hilbert spaces, Indiana Univ. Math. J. 39 (1990), 517-546. Zbl0695.35144
- [24] D. A. White, Modified wave operators and Stark Hamiltonians, Duke Math. J. 68 (1992), 83-100. Zbl0766.35033
- [25] U. Wüller, Geometric methods in scattering theory of the charge transfer model, ibid. 62 (1991), 273-313. Zbl0732.35055
- [26] K. Yajima, A multi-channel scattering theory for some time dependent hamiltonians, Charge Transfer Problem, Comm. Math. Phys. 75 (1980), 153-178. Zbl0437.47008
- [27] K. Yajima, Spectral and scattering theory for Schrödinger operators with Stark effect, J. Fac. Sci. Univ. Tokyo Sect. IA 26 (1979), 377-390. Zbl0429.35027
- [28] K. Yajima, Spectral and scattering theory for Schrödinger operators with Stark effect, II, ibid. 28 (1981), 1-15.
- [29] L. Zieliński, Complétude asymptotique pour un modèle du transfert de charge, Ann. Inst. H. Poincaré Phys. Théor. 58 (1993), 363-411.
- [30] L. Zieliński, Scattering for a dispersive charge transfer model, ibid. 65 (1997), 339-386. Zbl0887.35110
- [31] L. Zieliński, Asymptotic completeness for multiparticle dispersive charge transfer model, J. Funct. Anal. 150 (1997), 453-470. Zbl0891.35134
- [32] L. Zieliński, Dispersive charge transfer model with long range interactions, J. Math. Anal. Appl. 217 (1998), 43-71. Zbl0913.35112
- [33] J. Zorbas, Scattering theory for Stark Hamiltonians involving long range potentials, J. Math. Phys. 19 (1978), 577-580.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.