L p -inequalities for the laplacian and unique continuation

W. O. Amrein; A. M. Berthier; V. Georgescu

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 3, page 153-168
  • ISSN: 0373-0956

Abstract

top
We prove an inequality of the type | x | r f L p ( R n ) c ( n , p , q , r ) | x | τ + μ Δ f L q ( R n ) . This is then used to derive the unique continuation property for the differential inequality | Δ f ( x ) | | v ( x ) | | f ( x ) | under suitable local integrability assumptions on the function v .

How to cite

top

Amrein, W. O., Berthier, A. M., and Georgescu, V.. "$L^p$-inequalities for the laplacian and unique continuation." Annales de l'institut Fourier 31.3 (1981): 153-168. <http://eudml.org/doc/74502>.

@article{Amrein1981,
abstract = {We prove an inequality of the type\begin\{\}\Vert |x|^\{r\_f\}\Vert \_\{L^p(\{\bf R\}^n)\} \le c(n,p,q,r)\Vert |x|^\{\tau +\mu \} \Delta f\Vert \_\{L^q(\{\bf R\}^n)\}.\end\{\}This is then used to derive the unique continuation property for the differential inequality $|\Delta f(x)| \le |v(x)|\ |f(x)|$ under suitable local integrability assumptions on the function $v$.},
author = {Amrein, W. O., Berthier, A. M., Georgescu, V.},
journal = {Annales de l'institut Fourier},
keywords = {unique continuation properties; differential inequality; non-existence of positive eigenvalues; self-adjoint Schrödinger operators},
language = {eng},
number = {3},
pages = {153-168},
publisher = {Association des Annales de l'Institut Fourier},
title = {$L^p$-inequalities for the laplacian and unique continuation},
url = {http://eudml.org/doc/74502},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Amrein, W. O.
AU - Berthier, A. M.
AU - Georgescu, V.
TI - $L^p$-inequalities for the laplacian and unique continuation
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 3
SP - 153
EP - 168
AB - We prove an inequality of the type\begin{}\Vert |x|^{r_f}\Vert _{L^p({\bf R}^n)} \le c(n,p,q,r)\Vert |x|^{\tau +\mu } \Delta f\Vert _{L^q({\bf R}^n)}.\end{}This is then used to derive the unique continuation property for the differential inequality $|\Delta f(x)| \le |v(x)|\ |f(x)|$ under suitable local integrability assumptions on the function $v$.
LA - eng
KW - unique continuation properties; differential inequality; non-existence of positive eigenvalues; self-adjoint Schrödinger operators
UR - http://eudml.org/doc/74502
ER -

References

top
  1. [1] R.A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR56 #9247
  2. [2] A.M. BERTHIER, Sur le spectre ponctuel de l'opérateur de Schrödinger, C.R. Acad. Sci., Paris 290 A, (1980), 393-395 ; On the Point Spectrum of Schrödinger Operators, Ann. Sci. Ecole Normale Supérieure (to appear). Zbl0454.35070MR81a:35072
  3. [3] N. DUNFORD and J.T. SCHWARTZ, Linear Operators, Part I, Interscience, New York, 1957. 
  4. [4] V. GEORGESCU, On the Unique Continuation Property for Schrödinger Hamiltonians, Helv. Phys. Acta, 52 (1979), 655-670. 
  5. [5] G.H. HARDY, J.E. LITTELEWOOD and G. POLYA, Inequalities, Cambridge University Press, 1952. Zbl0047.05302
  6. [6] E. HEINZ, Über die Eindeutigkeit beim Cauchy'schen Anfangswert-problem einer elliptischen Differentialgleichung zweiter Ordnung, Nachr. Akad.-Wiss. Göttingen, II (1955), 1-12. Zbl0067.07503MR17,626c
  7. [7] L. HÖRMANDER, Linear Partial Differential Operators, Springer, Berlin, 1963. Zbl0108.09301
  8. [8] M. SCHECHTER and B. SIMON, Unique Continuation for Schrödinger Operators with Unbounded Potentials, J. Math. Anal. Appl., 77 (1980), 482-492. Zbl0458.35024MR83b:35031
  9. [9] E.M. STEIN and G. WEISS, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. Zbl0232.42007MR46 #4102
  10. [10] H. TRIEBEL, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. Zbl0387.46032

Citations in EuDML Documents

top
  1. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, Jörg Swetina, Pointwise bounds on the asymptotics of spherically averaged L 2 -solutions of one-body Schrödinger equations
  2. Eric T. Sawyer, Unique continuation for Schrödinger operators in dimension three or less
  3. Werner O. Amrein, Bornes inférieurs pour des fonctions propres de l'opérateur de Schrödinger
  4. Nicola Garofalo, Zhongwei Shen, Carleman estimates for a subelliptic operator and unique continuation
  5. Lech Zieliński, Charge transfer scatteringin a constant electric field

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.