Flat semilattices

George Grätzer; Friedrich Wehrung

Colloquium Mathematicae (1999)

  • Volume: 79, Issue: 2, page 185-191
  • ISSN: 0010-1354

How to cite

top

Grätzer, George, and Wehrung, Friedrich. "Flat semilattices." Colloquium Mathematicae 79.2 (1999): 185-191. <http://eudml.org/doc/210633>.

@article{Grätzer1999,
author = {Grätzer, George, Wehrung, Friedrich},
journal = {Colloquium Mathematicae},
keywords = {antitone; lattice; flat; semilattice; tensor product; flat semilattice; distributive},
language = {eng},
number = {2},
pages = {185-191},
title = {Flat semilattices},
url = {http://eudml.org/doc/210633},
volume = {79},
year = {1999},
}

TY - JOUR
AU - Grätzer, George
AU - Wehrung, Friedrich
TI - Flat semilattices
JO - Colloquium Mathematicae
PY - 1999
VL - 79
IS - 2
SP - 185
EP - 191
LA - eng
KW - antitone; lattice; flat; semilattice; tensor product; flat semilattice; distributive
UR - http://eudml.org/doc/210633
ER -

References

top
  1. [1] J. Anderson and N. Kimura, The tensor product of semilattices, Semigroup Forum 16 (1978), 83-88. Zbl0387.20044
  2. [2] G. Fraser, The tensor product of semilattices, Algebra Universalis 8 (1978), 1-3. Zbl0474.06005
  3. [3] K. R. Goodearl and F. Wehrung, Representations of distributive semilattices by dimension groups, regular rings, C * -algebras, and complemented modular lattices, submitted for publication, 1997. 
  4. [4] G. Grätzer, General Lattice Theory, 2nd ed., Birkhäuser, Basel, 1998. Zbl0909.06002
  5. [5] G. Grätzer, H. Lakser and R. W. Quackenbush, The structure of tensor products of semilattices with zero, Trans. Amer. Math. Soc. 267 (1981), 503-515. Zbl0478.06003
  6. [6] G. Grätzer and F. Wehrung, Tensor products of semilattices with zero, revisited, J. Pure Appl. Algebra, to appear. Zbl0945.06003
  7. [7] G. Grätzer and F. Wehrung, Tensor products and transferability of semilattices, submitted for publication, 1998. 
  8. [8] P. Pudlák, On congruence lattices of lattices, Algebra Universalis 20 (1985), 96-114. Zbl0562.06005
  9. [9] R. W. Quackenbush, Non-modular varieties of semimodular lattices with a spanning M 3 , Discrete Math. 53 (1985), 193-205. Zbl0558.06005
  10. [10] E. T. Schmidt, Zur Charakterisierung der Kongruenzverbände der Verbände, Mat. Časopis Sloven. Akad. Vied 18 (1968), 3-20. Zbl0155.35102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.