Normal bases for infinite Galois ring extensions

Patrik Lundström

Colloquium Mathematicae (1999)

  • Volume: 79, Issue: 2, page 235-240
  • ISSN: 0010-1354

How to cite

top

Lundström, Patrik. "Normal bases for infinite Galois ring extensions." Colloquium Mathematicae 79.2 (1999): 235-240. <http://eudml.org/doc/210638>.

@article{Lundström1999,
author = {Lundström, Patrik},
journal = {Colloquium Mathematicae},
keywords = {ring of continuous functions; normal basis for a Galois ring extension},
language = {eng},
number = {2},
pages = {235-240},
title = {Normal bases for infinite Galois ring extensions},
url = {http://eudml.org/doc/210638},
volume = {79},
year = {1999},
}

TY - JOUR
AU - Lundström, Patrik
TI - Normal bases for infinite Galois ring extensions
JO - Colloquium Mathematicae
PY - 1999
VL - 79
IS - 2
SP - 235
EP - 240
LA - eng
KW - ring of continuous functions; normal basis for a Galois ring extension
UR - http://eudml.org/doc/210638
ER -

References

top
  1. [BH] H. Bass, Algebraic K-theory, Benjamin, 1968. 
  2. [BN] N. Bourbaki, General Topology, Hermann, 1966. 
  3. [C] S. U. Chase, D. K. Harrison and A. Rosenberg, Galois theory and cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965). Zbl0143.05902
  4. [J] N. Jacobson, Basic Algebra I, Freeman, 1980. 
  5. [LS] S. Lang, Algebra, Addison-Wesley, 1993. 
  6. [LH] H. W. Jr. Lenstra, A normal basis theorem for infinite Galois extensions, Indag. Math. 47 (1985), 221-228. Zbl0569.12013
  7. [LP] P. Lundström, Self-dual normal bases in infinite Galois field extensions, Comm. Algebra 26 (1998), 4331-4341. Zbl0936.12002
  8. [M] A. Mostowski, Eine Verallgemeinerung eines Satzes von M. Deuring, Acta Sci. Math. (Szeged) 16 (1955), 197-203. Zbl0066.29002
  9. [NT] T. Nagahara, A note on Galois theory of commutative rings, Proc. Amer. Math. Soc. 18 (1967), 334-340. Zbl0152.02902
  10. [NM] M. Nagata, Local Rings, Wiley, 1962. 
  11. [R] L. Rowen, Ring Theory, Vol. I, Academic Press, 1988. 
  12. [S] A. H. Stone, Inverse limits of compact spaces, Gen. Topology Appl. 10 (1988), 203-211. Zbl0435.54008

NotesEmbed ?

top

You must be logged in to post comments.