Quantum logics with classically determined states

Paolo de Lucia; Pavel Pták

Colloquium Mathematicae (1999)

  • Volume: 80, Issue: 1, page 147-154
  • ISSN: 0010-1354

How to cite

top

de Lucia, Paolo, and Pták, Pavel. "Quantum logics with classically determined states." Colloquium Mathematicae 80.1 (1999): 147-154. <http://eudml.org/doc/210700>.

@article{deLucia1999,
author = {de Lucia, Paolo, Pták, Pavel},
journal = {Colloquium Mathematicae},
keywords = {quantum logic (= orthomodular poset); Boolean algebra; state (= probability measure); quantum logic; orthomodular poset; state; probability measure; state-classically-determined logic},
language = {eng},
number = {1},
pages = {147-154},
title = {Quantum logics with classically determined states},
url = {http://eudml.org/doc/210700},
volume = {80},
year = {1999},
}

TY - JOUR
AU - de Lucia, Paolo
AU - Pták, Pavel
TI - Quantum logics with classically determined states
JO - Colloquium Mathematicae
PY - 1999
VL - 80
IS - 1
SP - 147
EP - 154
LA - eng
KW - quantum logic (= orthomodular poset); Boolean algebra; state (= probability measure); quantum logic; orthomodular poset; state; probability measure; state-classically-determined logic
UR - http://eudml.org/doc/210700
ER -

References

top
  1. [1] E. Beltranetti and G. Cassinelli, The Logic of Quantum Mechanics, Addison-Wesley, Reading, Mass., 1981. 
  2. [2] L. Bunce, M. Navara, P. Pták and J. D. M. Wright, Quantum logics with Jauch-Piron states, Quart. J. Math. Oxford 36 (1985), 261-271. Zbl0585.03038
  3. [3] R. Greechie, Orthomodular lattices admitting no states, J. Combin. Theory Ser. A 10 (1971), 119-132. Zbl0219.06007
  4. [4] S. Gudder, Stochastic Methods of Quantum Mechanics, North-Holland, Amsterdam, 1979. Zbl0439.46047
  5. [5] P. de Lucia and P. Morales, A non-commutative version of the Alexandroff decomposition theorem in ordered topological groups, Pubblicazioni del Dipartimento di Matematica e Applicazioni 'R. Caccioppoli', Università degli Studi di Napoli 'Federico II', 1993, 1-21. 
  6. [6] P. de Lucia and P. Pták, Quantum probability spaces that are nearly classical, Bull. Polish Acad. Sci. Math. 40 (1992), 163-173. Zbl0765.60001
  7. [7] V. Müller, Jauch-Piron states on concrete quantum logics, Internat. J. Theoret. Phys. 32 (1993), 433-442. Zbl0791.03039
  8. [8] M. Navara and P. Pták, Almost Boolean orthomodular posets, J. Pure Appl. Algebra 60 (1989), 105-111. Zbl0691.03045
  9. [9] P. Pták, Exotic logics, Colloq. Math. 54 (1987), 1-7. Zbl0639.03063
  10. [10] P. Pták and S. Pulmannová, Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht, 1991. Zbl0743.03039
  11. [11] G. Rüttimann, Jauch-Piron states, J. Math. Phys. 18 (1977), 189-193. Zbl0388.03025
  12. [12] R. Sikorski, Boolean Algebras, Springer, Berlin, 1964. 
  13. [13] R. M. Solovay, Real-valued measurable cardinals, in: Axiomatic Set Theory, Proc. Sympos. Pure Math. 13, Part I, Amer. Math. Soc., Providence, R.I., 1971, 397-428. 
  14. [14] J. Tkadlec, Partially additive measures and set representations of orthoposets, J. Pure Appl. Algebra 86 (1993), 79-94. Zbl0777.06009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.