Quantum logics with classically determined states
Colloquium Mathematicae (1999)
- Volume: 80, Issue: 1, page 147-154
- ISSN: 0010-1354
Access Full Article
topHow to cite
topde Lucia, Paolo, and Pták, Pavel. "Quantum logics with classically determined states." Colloquium Mathematicae 80.1 (1999): 147-154. <http://eudml.org/doc/210700>.
@article{deLucia1999,
author = {de Lucia, Paolo, Pták, Pavel},
journal = {Colloquium Mathematicae},
keywords = {quantum logic (= orthomodular poset); Boolean algebra; state (= probability measure); quantum logic; orthomodular poset; state; probability measure; state-classically-determined logic},
language = {eng},
number = {1},
pages = {147-154},
title = {Quantum logics with classically determined states},
url = {http://eudml.org/doc/210700},
volume = {80},
year = {1999},
}
TY - JOUR
AU - de Lucia, Paolo
AU - Pták, Pavel
TI - Quantum logics with classically determined states
JO - Colloquium Mathematicae
PY - 1999
VL - 80
IS - 1
SP - 147
EP - 154
LA - eng
KW - quantum logic (= orthomodular poset); Boolean algebra; state (= probability measure); quantum logic; orthomodular poset; state; probability measure; state-classically-determined logic
UR - http://eudml.org/doc/210700
ER -
References
top- [1] E. Beltranetti and G. Cassinelli, The Logic of Quantum Mechanics, Addison-Wesley, Reading, Mass., 1981.
- [2] L. Bunce, M. Navara, P. Pták and J. D. M. Wright, Quantum logics with Jauch-Piron states, Quart. J. Math. Oxford 36 (1985), 261-271. Zbl0585.03038
- [3] R. Greechie, Orthomodular lattices admitting no states, J. Combin. Theory Ser. A 10 (1971), 119-132. Zbl0219.06007
- [4] S. Gudder, Stochastic Methods of Quantum Mechanics, North-Holland, Amsterdam, 1979. Zbl0439.46047
- [5] P. de Lucia and P. Morales, A non-commutative version of the Alexandroff decomposition theorem in ordered topological groups, Pubblicazioni del Dipartimento di Matematica e Applicazioni 'R. Caccioppoli', Università degli Studi di Napoli 'Federico II', 1993, 1-21.
- [6] P. de Lucia and P. Pták, Quantum probability spaces that are nearly classical, Bull. Polish Acad. Sci. Math. 40 (1992), 163-173. Zbl0765.60001
- [7] V. Müller, Jauch-Piron states on concrete quantum logics, Internat. J. Theoret. Phys. 32 (1993), 433-442. Zbl0791.03039
- [8] M. Navara and P. Pták, Almost Boolean orthomodular posets, J. Pure Appl. Algebra 60 (1989), 105-111. Zbl0691.03045
- [9] P. Pták, Exotic logics, Colloq. Math. 54 (1987), 1-7. Zbl0639.03063
- [10] P. Pták and S. Pulmannová, Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht, 1991. Zbl0743.03039
- [11] G. Rüttimann, Jauch-Piron states, J. Math. Phys. 18 (1977), 189-193. Zbl0388.03025
- [12] R. Sikorski, Boolean Algebras, Springer, Berlin, 1964.
- [13] R. M. Solovay, Real-valued measurable cardinals, in: Axiomatic Set Theory, Proc. Sympos. Pure Math. 13, Part I, Amer. Math. Soc., Providence, R.I., 1971, 397-428.
- [14] J. Tkadlec, Partially additive measures and set representations of orthoposets, J. Pure Appl. Algebra 86 (1993), 79-94. Zbl0777.06009
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.