Strong 𝒮 -groups

Ulrich Albrecht; H. Goeters

Colloquium Mathematicae (1999)

  • Volume: 80, Issue: 1, page 97-105
  • ISSN: 0010-1354

How to cite

top

Albrecht, Ulrich, and Goeters, H.. "Strong ${\mathcal {S}}$-groups." Colloquium Mathematicae 80.1 (1999): 97-105. <http://eudml.org/doc/210708>.

@article{Albrecht1999,
author = {Albrecht, Ulrich, Goeters, H.},
journal = {Colloquium Mathematicae},
keywords = {finite rank torsion-free Abelian groups; -groups; strong -groups; subgroups of finite index; endomorphism rings; almost completely decomposable groups; quasi-isomorphisms},
language = {eng},
number = {1},
pages = {97-105},
title = {Strong $\{\mathcal \{S\}\}$-groups},
url = {http://eudml.org/doc/210708},
volume = {80},
year = {1999},
}

TY - JOUR
AU - Albrecht, Ulrich
AU - Goeters, H.
TI - Strong ${\mathcal {S}}$-groups
JO - Colloquium Mathematicae
PY - 1999
VL - 80
IS - 1
SP - 97
EP - 105
LA - eng
KW - finite rank torsion-free Abelian groups; -groups; strong -groups; subgroups of finite index; endomorphism rings; almost completely decomposable groups; quasi-isomorphisms
UR - http://eudml.org/doc/210708
ER -

References

top
  1. [1] U. Albrecht, The construction of A-solvable abelian groups, Czechoslovak Math. J. 44 (119) (1994), 413-430. Zbl0823.20056
  2. [2] U. Albrecht and H. P. Goeters, Pure subgroups of A-projective groups, Acta Math. Hungar. 65 (1994), 217-227. Zbl0814.20038
  3. [3] D. M. Arnold, Endomorphism rings and subgroups of finite rank torsion-free abelian groups, Rocky Mountain J. Math. 12 (1982), 241-256. Zbl0502.20031
  4. [4] D. M. Arnold and L. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225-237. Zbl0329.20033
  5. [5] R. A. Beaumont and R. S. Pierce, Torsion-free groups of rank 2, Mem. Amer. Math. Soc. 38 (1961). Zbl0122.27802
  6. [6] T. G. Faticoni and H. P. Goeters, On torsion-free Ext, Comm. Algebra 16 (1988), 1853-1876. Zbl0667.20042
  7. [7] H. P. Goeters and W. Ullery, Homomorphic images of completely decomposable finite rank torsion-free groups, J. Algebra 104 (1991), 1-11. Zbl0739.20024
  8. [8] U F. Ulmer, A flatness criterion in Grothendieck categories, Invent. Math. 19 (1973), 331-336. 
  9. [9] R. B. Warfield, Extensions of torsion-free abelian groups of finite rank, Arch. Math. (Basel) 23 (1972), 145-150. Zbl0244.20064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.