# Strong $\mathcal{S}$-groups

Colloquium Mathematicae (1999)

- Volume: 80, Issue: 1, page 97-105
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topAlbrecht, Ulrich, and Goeters, H.. "Strong ${\mathcal {S}}$-groups." Colloquium Mathematicae 80.1 (1999): 97-105. <http://eudml.org/doc/210708>.

@article{Albrecht1999,

author = {Albrecht, Ulrich, Goeters, H.},

journal = {Colloquium Mathematicae},

keywords = {finite rank torsion-free Abelian groups; -groups; strong -groups; subgroups of finite index; endomorphism rings; almost completely decomposable groups; quasi-isomorphisms},

language = {eng},

number = {1},

pages = {97-105},

title = {Strong $\{\mathcal \{S\}\}$-groups},

url = {http://eudml.org/doc/210708},

volume = {80},

year = {1999},

}

TY - JOUR

AU - Albrecht, Ulrich

AU - Goeters, H.

TI - Strong ${\mathcal {S}}$-groups

JO - Colloquium Mathematicae

PY - 1999

VL - 80

IS - 1

SP - 97

EP - 105

LA - eng

KW - finite rank torsion-free Abelian groups; -groups; strong -groups; subgroups of finite index; endomorphism rings; almost completely decomposable groups; quasi-isomorphisms

UR - http://eudml.org/doc/210708

ER -

## References

top- [1] U. Albrecht, The construction of A-solvable abelian groups, Czechoslovak Math. J. 44 (119) (1994), 413-430. Zbl0823.20056
- [2] U. Albrecht and H. P. Goeters, Pure subgroups of A-projective groups, Acta Math. Hungar. 65 (1994), 217-227. Zbl0814.20038
- [3] D. M. Arnold, Endomorphism rings and subgroups of finite rank torsion-free abelian groups, Rocky Mountain J. Math. 12 (1982), 241-256. Zbl0502.20031
- [4] D. M. Arnold and L. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225-237. Zbl0329.20033
- [5] R. A. Beaumont and R. S. Pierce, Torsion-free groups of rank 2, Mem. Amer. Math. Soc. 38 (1961). Zbl0122.27802
- [6] T. G. Faticoni and H. P. Goeters, On torsion-free Ext, Comm. Algebra 16 (1988), 1853-1876. Zbl0667.20042
- [7] H. P. Goeters and W. Ullery, Homomorphic images of completely decomposable finite rank torsion-free groups, J. Algebra 104 (1991), 1-11. Zbl0739.20024
- [8] U F. Ulmer, A flatness criterion in Grothendieck categories, Invent. Math. 19 (1973), 331-336.
- [9] R. B. Warfield, Extensions of torsion-free abelian groups of finite rank, Arch. Math. (Basel) 23 (1972), 145-150. Zbl0244.20064

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.