The construction of A -solvable Abelian groups

Ulrich F. Albrecht

Czechoslovak Mathematical Journal (1994)

  • Volume: 44, Issue: 3, page 413-430
  • ISSN: 0011-4642

How to cite

top

Albrecht, Ulrich F.. "The construction of $A$-solvable Abelian groups." Czechoslovak Mathematical Journal 44.3 (1994): 413-430. <http://eudml.org/doc/31427>.

@article{Albrecht1994,
author = {Albrecht, Ulrich F.},
journal = {Czechoslovak Mathematical Journal},
keywords = {module categories; functorial equivalence; modules; endomorphism rings; adjoint functors; category of Abelian groups; torsion-free abelian groups; -solvable groups},
language = {eng},
number = {3},
pages = {413-430},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The construction of $A$-solvable Abelian groups},
url = {http://eudml.org/doc/31427},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Albrecht, Ulrich F.
TI - The construction of $A$-solvable Abelian groups
JO - Czechoslovak Mathematical Journal
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 44
IS - 3
SP - 413
EP - 430
LA - eng
KW - module categories; functorial equivalence; modules; endomorphism rings; adjoint functors; category of Abelian groups; torsion-free abelian groups; -solvable groups
UR - http://eudml.org/doc/31427
ER -

References

top
  1. 10.1090/S0002-9939-1988-0938637-8, Proc. Amer. Math. Soc. 103 (1) (1988), 21–26. (1988) Zbl0646.20042MR0938637DOI10.1090/S0002-9939-1988-0938637-8
  2. 10.1007/BF03322457, Results in Mathematics 17 (1990), 179–201. (1990) Zbl0709.20031MR1052585DOI10.1007/BF03322457
  3. 10.1090/conm/087/995270, Contemporary Mathematics 87 (1989), 117–131. (1989) Zbl0691.20038MR0995270DOI10.1090/conm/087/995270
  4. 10.1080/00927878908823776, Communications in Algebra 17 (5) (1989), 1101–1135. (1989) Zbl0691.20040MR0993391DOI10.1080/00927878908823776
  5. Extension functors on the category of A -solvable abelian groups, Czech. Math. J. 41 (116) (1991), 685–694. (1991) Zbl0776.20018MR1134957
  6. Endomorphism rings and Fuchs’ Problem 47, (to appear). (to appear) 
  7. 10.1017/S0004972700029610, Bull. Austral. Math. Soc. 44 (1991), 189–201. (1991) MR1126356DOI10.1017/S0004972700029610
  8. 10.1090/S0002-9947-1975-0417314-1, Trans. Amer. Math. Soc. 211 (1975), 225–237. (1975) MR0417314DOI10.1090/S0002-9947-1975-0417314-1
  9. 10.2140/pjm.1975.56.7, Pac. J. of Math. 56 (1975), 7–20. (1975) MR0376901DOI10.2140/pjm.1975.56.7
  10. Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. 45 (1982), 319–336. (1982) MR0670040
  11. 10.1016/0022-4049(87)90090-9, J. of Pure and Appl. Alg. 46 (1987), 137–163. (1987) DOI10.1016/0022-4049(87)90090-9
  12. 10.1080/00927879108824126, Comm. in Algebra 19 (1991), 1–27. (1991) MR1092548DOI10.1080/00927879108824126
  13. On torsion-free E x t , Comm. in Algebra 16 (9) (1988), 1853–1876. (1988) MR0952214
  14. Infinite Abelian Groups Vol. I/II, Academic Press, New York, London, 1970/73. (1970/73) MR0255673
  15. 10.1007/BF01390094, Inv. Math. 13 (1971), 1–89. (1971) MR0308104DOI10.1007/BF01390094
  16. 10.1080/00927878908823718, Comm. in Algebra 17 (1989), 135–148. (1989) Zbl0667.16020MR0970868DOI10.1080/00927878908823718
  17. 10.1090/S0002-9939-1962-0133356-4, Proc. Amer. Math. Soc. 13 (1962), 222–225. (1962) MR0133356DOI10.1090/S0002-9939-1962-0133356-4
  18. Rings of Quotients, Springer Verlag, Berlin, New York, Heidelberg, 1975. (1975) MR0389953
  19. 10.1007/BF01110257, Math. Z. 107 (1968), 189–200. (1968) Zbl0169.03602MR0237642DOI10.1007/BF01110257

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.