Polynomial algebra of constants of the Lotka-Volterra system

Jean Moulin Ollagnier; Andrzej Nowicki

Colloquium Mathematicae (1999)

  • Volume: 81, Issue: 2, page 263-270
  • ISSN: 0010-1354

Abstract

top
Let k be a field of characteristic zero. We describe the kernel of any quadratic homogeneous derivation d:k[x,y,z] → k[x,y,z] of the form d = x ( C y + z ) x + y ( A z + x ) y + z ( B x + y ) z , called the Lotka-Volterra derivation, where A,B,C ∈ k.

How to cite

top

Moulin Ollagnier, Jean, and Nowicki, Andrzej. "Polynomial algebra of constants of the Lotka-Volterra system." Colloquium Mathematicae 81.2 (1999): 263-270. <http://eudml.org/doc/210738>.

@article{MoulinOllagnier1999,
abstract = {Let k be a field of characteristic zero. We describe the kernel of any quadratic homogeneous derivation d:k[x,y,z] → k[x,y,z] of the form $d = x(Cy+z)\frac\{∂\}\{∂x\} + y(Az+x)\frac\{∂\}\{∂y\} + z(Bx+y)\frac\{∂\}\{∂z\}$, called the Lotka-Volterra derivation, where A,B,C ∈ k.},
author = {Moulin Ollagnier, Jean, Nowicki, Andrzej},
journal = {Colloquium Mathematicae},
language = {eng},
number = {2},
pages = {263-270},
title = {Polynomial algebra of constants of the Lotka-Volterra system},
url = {http://eudml.org/doc/210738},
volume = {81},
year = {1999},
}

TY - JOUR
AU - Moulin Ollagnier, Jean
AU - Nowicki, Andrzej
TI - Polynomial algebra of constants of the Lotka-Volterra system
JO - Colloquium Mathematicae
PY - 1999
VL - 81
IS - 2
SP - 263
EP - 270
AB - Let k be a field of characteristic zero. We describe the kernel of any quadratic homogeneous derivation d:k[x,y,z] → k[x,y,z] of the form $d = x(Cy+z)\frac{∂}{∂x} + y(Az+x)\frac{∂}{∂y} + z(Bx+y)\frac{∂}{∂z}$, called the Lotka-Volterra derivation, where A,B,C ∈ k.
LA - eng
UR - http://eudml.org/doc/210738
ER -

References

top
  1. [1] B. Grammaticos, J. Moulin Ollagnier, A. Ramani, J.-M. Strelcyn and S. Wojciechowski, Integrals of quadratic ordinary differential equations in 3 : the Lotka-Volterra system, Phys. A 163 (1990), 683-722. Zbl0714.34005
  2. [2] J. Moulin Ollagnier, Polynomial first integrals of the Lotka-Volterra system, Bull. Sci. Math. 121 (1997), 463-476. Zbl0887.34002
  3. [3] J. Moulin Ollagnier, Rational integration of the Lotka-Volterra system, ibid. 123 (1999), 437-466. 
  4. [4] J. Moulin Ollagnier, A. Nowicki and J.-M. Strelcyn, On the non-existence of constants of derivations: the proof of a theorem of Jouanolou and its development, ibid. 119 (1995), 195-233. Zbl0855.34010
  5. [5] A. Nowicki, Polynomial derivations and their rings of constants, N. Copernicus University Press, Toruń, 1994. 
  6. [6] A. Nowicki, On the non-existence of rational first integrals for systems of linear differential equations, Linear Algebra Appl. 235 (1996), 107-120. Zbl0843.34013
  7. [7] A. Nowicki and M. Nagata, Rings of constants for k-derivations in k [ x 1 , . . . , x n ] , J. Math. Kyoto Univ. 28 (1988), 111-118. Zbl0665.12024
  8. [8] A. Nowicki and J.-M. Strelcyn, Generators of rings of constants for some diagonal derivations in polynomial rings, J. Pure Appl. Algebra 101 (1995), 207-212. Zbl0832.12002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.