# Simply connected right multipeak algebras and the separation property

Colloquium Mathematicae (1999)

- Volume: 82, Issue: 1, page 137-153
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topKasjan, Stanisław. "Simply connected right multipeak algebras and the separation property." Colloquium Mathematicae 82.1 (1999): 137-153. <http://eudml.org/doc/210746>.

@article{Kasjan1999,

abstract = {Let R=k(Q,I) be a finite-dimensional algebra over a field k determined by a bound quiver (Q,I). We show that if R is a simply connected right multipeak algebra which is chord-free and $\widetilde\{\}$-free in the sense defined below then R has the separation property and there exists a preprojective component of the Auslander-Reiten quiver of the category prin(R) of prinjective R-modules. As a consequence we get in 4.6 a criterion for finite representation type of prin(R) in terms of the prinjective Tits quadratic form of R.},

author = {Kasjan, Stanisław},

journal = {Colloquium Mathematicae},

keywords = {multipeak path algebras; prinjective modules; almost split sequences; Auslander-Reiten quivers; finite representation type; fundamental groups of bound quivers; Hochschild cohomology},

language = {eng},

number = {1},

pages = {137-153},

title = {Simply connected right multipeak algebras and the separation property},

url = {http://eudml.org/doc/210746},

volume = {82},

year = {1999},

}

TY - JOUR

AU - Kasjan, Stanisław

TI - Simply connected right multipeak algebras and the separation property

JO - Colloquium Mathematicae

PY - 1999

VL - 82

IS - 1

SP - 137

EP - 153

AB - Let R=k(Q,I) be a finite-dimensional algebra over a field k determined by a bound quiver (Q,I). We show that if R is a simply connected right multipeak algebra which is chord-free and $\widetilde{}$-free in the sense defined below then R has the separation property and there exists a preprojective component of the Auslander-Reiten quiver of the category prin(R) of prinjective R-modules. As a consequence we get in 4.6 a criterion for finite representation type of prin(R) in terms of the prinjective Tits quadratic form of R.

LA - eng

KW - multipeak path algebras; prinjective modules; almost split sequences; Auslander-Reiten quivers; finite representation type; fundamental groups of bound quivers; Hochschild cohomology

UR - http://eudml.org/doc/210746

ER -

## References

top- [1] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417-450. Zbl0617.16018
- [2] R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. 27 (1983), 212-220. Zbl0511.16022
- [3] K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), 1-12. Zbl0552.16012
- [4] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378. Zbl0482.16026
- [5] O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 (1983), 21-40. Zbl0527.16021
- [6] P. Dräxler, Completely separating algebras, J. Algebra 165 (1994), 550-565. Zbl0804.16017
- [7] G E. L. Green, Group-graded algebras and the zero relation problem, in: Lecture Notes in Math. 903, Springer, Berlin, 1981, 106-115.
- [8] H.-J. von Höhne and D. Simson, Bipartite posets of finite prinjective type, J. Algebra 201 (1998), 86-114. Zbl0921.16004
- [9] K S. Kasjan, Bound quivers of three-separate stratified posets, their Galois coverings and socle projective representations, Fund. Math. 143 (1993), 259-279. Zbl0806.16011
- [10] R. Martínez-Villa and J. A. de la Pe na, The universal cover of a quiver with relations, J. Pure. Appl. Algebra 30 (1983), 277-292. Zbl0522.16028
- [11] J. A. de la Pe na and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753. Zbl0789.16010
- [12] Z. Pogorzały, On star-free bound quivers, Bull. Polish Acad. Sci. Math. 37 (1989), 255-267. Zbl0785.16008
- [13] D. Simson, Socle reductions and socle projective modules, J. Algebra 103 (1986), 18-68. Zbl0599.16014
- [14] D. Simson, A splitting theorem for multipeak path algebras, Fund. Math. 138 (1991), 112-137. Zbl0780.16010
- [15] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, 1992. Zbl0818.16009
- [16] D. Simson, Right peak algebras of two-separate stratified posets, their Galois coverings and socle projective modules, Comm. Algebra 20 (1992), 3541-3591. Zbl0791.16011
- [17] D. Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), 77-103. Zbl0815.16006
- [18] D. Simson, Three-partite subamalgams of tiled orders of finite lattice type, ibid. 138 (1999), 151-184. Zbl0928.16014
- [19] D. Simson, Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders, in: Contemp. Math. 229, Amer. Math. Soc., 1998, 307-342. Zbl0921.16007
- [20] D. Simson, Three-partite subamalgams of tiled orders of polynomial growth, Colloq. Math. 82 (1999), in press. Zbl0937.16020
- [21] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: Proc. Sixth Internat. Conf. on Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1992, 431-447. Zbl0806.16012
- [22] H. Spanier, Algebraic Topology, McGraw-Hill, 1966.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.