Tame three-partite subamalgams of tiled orders of polynomial growth
Colloquium Mathematicae (1999)
- Volume: 81, Issue: 2, page 237-262
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topSimson, Daniel. "Tame three-partite subamalgams of tiled orders of polynomial growth." Colloquium Mathematicae 81.2 (1999): 237-262. <http://eudml.org/doc/210737>.
@article{Simson1999,
abstract = {Assume that K is an algebraically closed field. Let D be a complete discrete valuation domain with a unique maximal ideal p and residue field D/p ≌ K. We also assume that D is an algebra over the field K . We study subamalgam D-suborders $Λ^•$ (1.2) of tiled D-orders Λ (1.1). A simple criterion for a tame lattice type subamalgam D-order $Λ^•$ to be of polynomial growth is given in Theorem 1.5. Tame lattice type subamalgam D-orders $Λ^•$ of non-polynomial growth are completely described in Theorem 6.2 and Corollary 6.3.},
author = {Simson, Daniel},
journal = {Colloquium Mathematicae},
keywords = {forbidden substructures; tame orders of polynomial growth; tame three-partite subamalgams; matrix algebras; amalgamations; integral quadratic forms; hypercritical two-peak posets; two-peak garlands},
language = {eng},
number = {2},
pages = {237-262},
title = {Tame three-partite subamalgams of tiled orders of polynomial growth},
url = {http://eudml.org/doc/210737},
volume = {81},
year = {1999},
}
TY - JOUR
AU - Simson, Daniel
TI - Tame three-partite subamalgams of tiled orders of polynomial growth
JO - Colloquium Mathematicae
PY - 1999
VL - 81
IS - 2
SP - 237
EP - 262
AB - Assume that K is an algebraically closed field. Let D be a complete discrete valuation domain with a unique maximal ideal p and residue field D/p ≌ K. We also assume that D is an algebra over the field K . We study subamalgam D-suborders $Λ^•$ (1.2) of tiled D-orders Λ (1.1). A simple criterion for a tame lattice type subamalgam D-order $Λ^•$ to be of polynomial growth is given in Theorem 1.5. Tame lattice type subamalgam D-orders $Λ^•$ of non-polynomial growth are completely described in Theorem 6.2 and Corollary 6.3.
LA - eng
KW - forbidden substructures; tame orders of polynomial growth; tame three-partite subamalgams; matrix algebras; amalgamations; integral quadratic forms; hypercritical two-peak posets; two-peak garlands
UR - http://eudml.org/doc/210737
ER -
References
top- [1] D. M. Arnold and M. Dugas, Block rigid almost completely decomposable groups and lattices over multiple pullback rings, J. Pure Appl. Algebra 87 (1993), 105-121. Zbl0818.20065
- [2] C. W. Curtis and I. Reiner, Methods of Representation Theory, Vol. I, Wiley Classics Library Edition, New York, 1990.
- [3] P. Dowbor and S. Kasjan, Galois covering technique and tame non-simply connected posets of polynomial growth, J. Pure Appl. Algebra 1999, in press. Zbl0998.16010
- [4] J. A. Drozd and M. G. Greuel, Tame-wild dichotomy for Cohen-Macaulay modules, Math. Ann. 294 (1992), 387-394. Zbl0760.16005
- [5] Y. A. Drozd, Cohen-Macaulay modules and vector bundles, in: Interactions between Ring Theory and Representations of Algebras (Murcia, 1998), Lecture Notes in Pure and Appl. Math., Marcel Dekker, 1999, to appear.
- [6] P. Gabriel and A. V. Roiter, Representations of Finite Dimensional Algebras, Algebra VIII, Encyclopedia Math. Sci. 73, Springer, 1992.
- [7] E. L. Green and I. Reiner, Integral representations and diagrams, Michigan Math. J. 25 (1978), 53-84. Zbl0365.16015
- [8] S. Kasjan, Adjustment functors and tame representation type, Comm. Algebra 22 (1994), 5587-5597. Zbl0823.16010
- [9] S. Kasjan, Minimal bipartite algebras of infinite prinjective type with prin-preprojective component, Colloq. Math. 76 (1998), 295-317. Zbl0912.16007
- [10] S. Kasjan, A criterion for polynomial growth of -free two-peak posets of tame prinjective type, preprint, Toruń, 1998.
- [11] S. Kasjan and D. Simson, Tame prinjective type and Tits form of two-peak posets I, J. Pure Appl. Algebra 106 (1996), 307-330. Zbl0856.16007
- [12] S. Kasjan and D. Simson, Tame prinjective type and Tits form of two-peak posets II, J. Algebra 187 (1997), 71-96. Zbl0944.16013
- [13] S. Kasjan and D. Simson, A subbimodule reduction, a peak reduction functor and tame prinjective type, Bull. Polish Acad. Sci. Math. 45 (1997), 89-107. Zbl0959.16012
- [14] L. A. Nazarova and V. A. Roiter, Representations of completed posets, Comment. Math. Helv. 63 (1988), 498-526. Zbl0671.18002
- [15] J. A. de la Pe na and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753. Zbl0789.16010
- [16] C. M. Ringel and K. W. Roggenkamp, Diagrammatic methods in the representation theory of orders, J. Algebra 60 (1979), 11-42. Zbl0438.16021
- [17] D. Simson, A splitting theorem for multipeak path algebras, Fund. Math. 138 (1991), 113-137. Zbl0780.16010
- [18] D. Simson, Right peak algebras of two-separate stratified posets, their Galois coverings and socle projective modules, Comm. Algebra 20 (1992), 3541-3591. Zbl0791.16011
- [19] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, New York, 1992. Zbl0818.16009
- [20] D. Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), 77-103. Zbl0815.16006
- [21] D. Simson, On representation types of module subcategories and orders, Bull. Polish Acad. Sci. Math. 41 (1993), 77-93. Zbl0805.16011
- [22] D. Simson, A reduction functor, tameness and Tits form for a class of orders, J. Algebra 174 (1995), 430-452. Zbl0831.16011
- [23] D. Simson, Triangles of modules and non-polynomial growth, C. R. Acad. Sci. Paris Sér. I 321 (1995), 33-38. Zbl0842.16010
- [24] D. Simson, Representation embedding problems, categories of extensions and prinjective modules, in: Representation Theory of Algebras (Cocoyoc, 1994), CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 601-639. Zbl0929.16014
- [25] D. Simson, Socle projective representations of partially ordered sets and Tits quadratic forms with application to lattices over orders, in: Abelian Groups and Modules (Colorado Springs, 1995), Lecture Notes in Pure and Appl. Math. 182, Marcel Dekker, 1996, 73-111. Zbl0869.16008
- [26] D. Simson, Prinjective modules, propartite modules, representations of bocses and lattices over orders, J. Math. Soc. Japan 49 (1997), 31-68. Zbl0937.16019
- [27] D. Simson, Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders, in: Trends in the Representation Theory of Finite Dimensional Algebras (Seattle, 1997), Contemp. Math. 229, Amer. Math. Soc., 1998, 307-342. Zbl0921.16007
- [28] D. Simson, Three-partite subamalgams of tiled orders of finite lattice type, J. Pure Appl. Algebra 138 (1999), 151-184. Zbl0928.16014
- [29] D. Simson, A reduced Tits quadratic form and tameness of three-partite subamalgams of tiled orders, Trans. Amer. Math. Soc., in press. Zbl0953.16016
- [30] D. Simson, Cohen-Macaulay modules over classical orders, in: Interactions between Ring Theory and Representations of Algebras (Murcia, 1998), Lecture Notes in Pure and Appl. Math., Marcel Dekker, 1999, to appear.
- [31] A. Skowroński, Group algebras of polynomial growth, Manuscripta Math. 59 (1987), 499-516. Zbl0627.16007
- [32] A. Skowroński, Criteria for polynomial growth of algebras, Bull. Polish Acad. Sci. Math. 42 (1994), 173-183. Zbl0865.16011
- [33] Y. Yoshino, Brauer-Thrall type theorem for maximal Cohen-Macaulay modules, J. Math. Soc. Japan 39 (1987), 719-739. Zbl0615.13008
- [34] Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Math. Soc. Lecture Note Ser. 146, Cambridge Univ. Press, 1990. Zbl0745.13003
- [35] A. G. Zavadskij and V. V. Kirichenko, Torsion-free modules over prime rings, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 57 (1976), 100-116 (in Russian).
- [36] A. G. Zavadskij and V. V. Kirichenko, Semimaximal rings of finite type, Mat. Sb. 103 (1977), 323-345 (in Russian). Zbl0396.16002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.