Fejér means of two-dimensional Fourier transforms on H p ( × )

Ferenc Weisz

Colloquium Mathematicae (1999)

  • Volume: 82, Issue: 2, page 155-166
  • ISSN: 0010-1354

Abstract

top
The two-dimensional classical Hardy spaces H p ( × ) are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from H p ( × ) to L p ( 2 ) (1/2 < p ≤ ∞) and is of weak type ( H 1 ( × ) , L 1 ( 2 ) ) where the Hardy space H 1 ( × ) is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ H 1 ( × ) L l o g L ( 2 ) converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on H p ( × ) whenever 1/2 < p < ∞. Thus, in case f ∈ H p ( × ) , the Fejér means converge to f in H p ( × ) norm (1/2 < p < ∞). The same results are proved for the conjugate Fejér means.

How to cite

top

Weisz, Ferenc. "Fejér means of two-dimensional Fourier transforms on $H_p(ℝ × ℝ)$." Colloquium Mathematicae 82.2 (1999): 155-166. <http://eudml.org/doc/210754>.

@article{Weisz1999,
abstract = {The two-dimensional classical Hardy spaces $H_p(ℝ × ℝ)$ are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from $H_p(ℝ × ℝ)$ to $L_p(ℝ^2)$ (1/2 < p ≤ ∞) and is of weak type $(H^\{#\}_1 (ℝ × ℝ), L_1(ℝ^2))$ where the Hardy space $H^#_1(ℝ × ℝ)$ is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ $H_1^#(ℝ × ℝ)$ ⊃ $LlogL(ℝ^2)$ converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on $H_p(ℝ × ℝ)$ whenever 1/2 < p < ∞. Thus, in case f ∈ $H_p(ℝ × ℝ)$, the Fejér means converge to f in $H_p(ℝ × ℝ)$ norm (1/2 < p < ∞). The same results are proved for the conjugate Fejér means.},
author = {Weisz, Ferenc},
journal = {Colloquium Mathematicae},
keywords = {p-atom; Hardy spaces; atomic decomposition; interpolation; Fejér means; maximal operator},
language = {eng},
number = {2},
pages = {155-166},
title = {Fejér means of two-dimensional Fourier transforms on $H_p(ℝ × ℝ)$},
url = {http://eudml.org/doc/210754},
volume = {82},
year = {1999},
}

TY - JOUR
AU - Weisz, Ferenc
TI - Fejér means of two-dimensional Fourier transforms on $H_p(ℝ × ℝ)$
JO - Colloquium Mathematicae
PY - 1999
VL - 82
IS - 2
SP - 155
EP - 166
AB - The two-dimensional classical Hardy spaces $H_p(ℝ × ℝ)$ are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from $H_p(ℝ × ℝ)$ to $L_p(ℝ^2)$ (1/2 < p ≤ ∞) and is of weak type $(H^{#}_1 (ℝ × ℝ), L_1(ℝ^2))$ where the Hardy space $H^#_1(ℝ × ℝ)$ is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ $H_1^#(ℝ × ℝ)$ ⊃ $LlogL(ℝ^2)$ converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on $H_p(ℝ × ℝ)$ whenever 1/2 < p < ∞. Thus, in case f ∈ $H_p(ℝ × ℝ)$, the Fejér means converge to f in $H_p(ℝ × ℝ)$ norm (1/2 < p < ∞). The same results are proved for the conjugate Fejér means.
LA - eng
KW - p-atom; Hardy spaces; atomic decomposition; interpolation; Fejér means; maximal operator
UR - http://eudml.org/doc/210754
ER -

References

top
  1. [1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988. Zbl0647.46057
  2. [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. Zbl0344.46071
  3. [3] S.-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and H p -theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. Zbl0557.42007
  4. [4] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
  5. [5] P. Duren, Theory of H p Spaces, Academic Press, New York, 1970. Zbl0215.20203
  6. [6] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982. 
  7. [7] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-194. Zbl0257.46078
  8. [8] R. Fefferman, Calderón-Zygmund theory for product domains: H p spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 840-843. Zbl0602.42023
  9. [9] A. P. Frazier, The dual space of H p of the polydisc for 0<p<1, Duke Math. J. 39 (1972), 369-379. Zbl0237.32005
  10. [10] R. F. Gundy, Maximal function characterization of H p for the bidisc, in: Lecture Notes in Math. 781, Springer, Berlin, 1982, 51-58. 
  11. [11] R. F. Gundy and E. M. Stein, H p theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1026-1029. Zbl0405.32002
  12. [12] K.-C. Lin, Interpolation between Hardy spaces on the bidisc, Studia Math. 84 (1986), 89-96. Zbl0626.46060
  13. [13] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132. Zbl65.0266.01
  14. [14] F. Móricz, The maximal Fejér operator for Fourier transforms of functions in Hardy spaces, Acta Sci. Math. (Szeged) 62 (1996), 537-555. Zbl0880.47018
  15. [15] F. Weisz, Cesàro summability of one- and two-dimensional trigonometric-Fourier series, Colloq. Math. 74 (1997), 123-133. Zbl0891.42006
  16. [16] F. Weisz, Cesàro summability of two-parameter trigonometric-Fourier series, J. Approx. Theory 90 (1997), 30-45. Zbl0878.42007
  17. [17] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. Zbl0796.60049
  18. [18] F. Weisz, Strong summability of two-dimensional trigonometric-Fourier series, Ann. Univ. Sci. Budapest Sect. Comput. 16 (1996), 391-406. Zbl0891.42005
  19. [19] F. Weisz, The maximal Fejér operator of Fourier transforms, Acta Sci. Math. (Szeged) 64 (1998), 515-525. Zbl0948.42003
  20. [20] N. Wiener, The Fourier Integral and Certain of its Applications, Dover, New York, 1959. Zbl0081.32102
  21. [21] J. M. Wilson, On the atomic decomposition for Hardy spaces, Pacific J. Math. 116 (1985), 201-207. Zbl0563.42012
  22. [22] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.