Fejér means of two-dimensional Fourier transforms on
Colloquium Mathematicae (1999)
- Volume: 82, Issue: 2, page 155-166
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topWeisz, Ferenc. "Fejér means of two-dimensional Fourier transforms on $H_p(ℝ × ℝ)$." Colloquium Mathematicae 82.2 (1999): 155-166. <http://eudml.org/doc/210754>.
@article{Weisz1999,
abstract = {The two-dimensional classical Hardy spaces $H_p(ℝ × ℝ)$ are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from $H_p(ℝ × ℝ)$ to $L_p(ℝ^2)$ (1/2 < p ≤ ∞) and is of weak type $(H^\{#\}_1 (ℝ × ℝ), L_1(ℝ^2))$ where the Hardy space $H^#_1(ℝ × ℝ)$ is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ $H_1^#(ℝ × ℝ)$ ⊃ $LlogL(ℝ^2)$ converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on $H_p(ℝ × ℝ)$ whenever 1/2 < p < ∞. Thus, in case f ∈ $H_p(ℝ × ℝ)$, the Fejér means converge to f in $H_p(ℝ × ℝ)$ norm (1/2 < p < ∞). The same results are proved for the conjugate Fejér means.},
author = {Weisz, Ferenc},
journal = {Colloquium Mathematicae},
keywords = {p-atom; Hardy spaces; atomic decomposition; interpolation; Fejér means; maximal operator},
language = {eng},
number = {2},
pages = {155-166},
title = {Fejér means of two-dimensional Fourier transforms on $H_p(ℝ × ℝ)$},
url = {http://eudml.org/doc/210754},
volume = {82},
year = {1999},
}
TY - JOUR
AU - Weisz, Ferenc
TI - Fejér means of two-dimensional Fourier transforms on $H_p(ℝ × ℝ)$
JO - Colloquium Mathematicae
PY - 1999
VL - 82
IS - 2
SP - 155
EP - 166
AB - The two-dimensional classical Hardy spaces $H_p(ℝ × ℝ)$ are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from $H_p(ℝ × ℝ)$ to $L_p(ℝ^2)$ (1/2 < p ≤ ∞) and is of weak type $(H^{#}_1 (ℝ × ℝ), L_1(ℝ^2))$ where the Hardy space $H^#_1(ℝ × ℝ)$ is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ $H_1^#(ℝ × ℝ)$ ⊃ $LlogL(ℝ^2)$ converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on $H_p(ℝ × ℝ)$ whenever 1/2 < p < ∞. Thus, in case f ∈ $H_p(ℝ × ℝ)$, the Fejér means converge to f in $H_p(ℝ × ℝ)$ norm (1/2 < p < ∞). The same results are proved for the conjugate Fejér means.
LA - eng
KW - p-atom; Hardy spaces; atomic decomposition; interpolation; Fejér means; maximal operator
UR - http://eudml.org/doc/210754
ER -
References
top- [1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988. Zbl0647.46057
- [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. Zbl0344.46071
- [3] S.-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and -theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. Zbl0557.42007
- [4] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [5] P. Duren, Theory of Spaces, Academic Press, New York, 1970. Zbl0215.20203
- [6] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.
- [7] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-194. Zbl0257.46078
- [8] R. Fefferman, Calderón-Zygmund theory for product domains: spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 840-843. Zbl0602.42023
- [9] A. P. Frazier, The dual space of of the polydisc for 0<p<1, Duke Math. J. 39 (1972), 369-379. Zbl0237.32005
- [10] R. F. Gundy, Maximal function characterization of for the bidisc, in: Lecture Notes in Math. 781, Springer, Berlin, 1982, 51-58.
- [11] R. F. Gundy and E. M. Stein, theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1026-1029. Zbl0405.32002
- [12] K.-C. Lin, Interpolation between Hardy spaces on the bidisc, Studia Math. 84 (1986), 89-96. Zbl0626.46060
- [13] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132. Zbl65.0266.01
- [14] F. Móricz, The maximal Fejér operator for Fourier transforms of functions in Hardy spaces, Acta Sci. Math. (Szeged) 62 (1996), 537-555. Zbl0880.47018
- [15] F. Weisz, Cesàro summability of one- and two-dimensional trigonometric-Fourier series, Colloq. Math. 74 (1997), 123-133. Zbl0891.42006
- [16] F. Weisz, Cesàro summability of two-parameter trigonometric-Fourier series, J. Approx. Theory 90 (1997), 30-45. Zbl0878.42007
- [17] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. Zbl0796.60049
- [18] F. Weisz, Strong summability of two-dimensional trigonometric-Fourier series, Ann. Univ. Sci. Budapest Sect. Comput. 16 (1996), 391-406. Zbl0891.42005
- [19] F. Weisz, The maximal Fejér operator of Fourier transforms, Acta Sci. Math. (Szeged) 64 (1998), 515-525. Zbl0948.42003
- [20] N. Wiener, The Fourier Integral and Certain of its Applications, Dover, New York, 1959. Zbl0081.32102
- [21] J. M. Wilson, On the atomic decomposition for Hardy spaces, Pacific J. Math. 116 (1985), 201-207. Zbl0563.42012
- [22] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. Zbl0085.05601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.