Cesàro summability of one- and two-dimensional trigonometric-Fourier series

Ferenc Weisz

Colloquium Mathematicae (1997)

  • Volume: 74, Issue: 1, page 123-133
  • ISSN: 0010-1354

Abstract

top
We introduce p-quasilocal operators and prove that if a sublinear operator T is p-quasilocal and bounded from L to L then it is also bounded from the classical Hardy space H p ( T ) to L p (0 < p ≤ 1). As an application it is shown that the maximal operator of the one-parameter Cesàro means of a distribution is bounded from H p ( T ) to L p (3/4 < p ≤ ∞) and is of weak type ( L 1 , L 1 ) . We define the two-dimensional dyadic hybrid Hardy space H 1 ( T 2 ) and verify that the maximal operator of the Cesàro means of a two-dimensional function is of weak type ( H 1 ( T 2 ) , L 1 ) . So we deduce that the two-parameter Cesàro means of a function f H 1 ( T 2 ) L l o g L converge a.e. to the function in question.

How to cite

top

Weisz, Ferenc. "Cesàro summability of one- and two-dimensional trigonometric-Fourier series." Colloquium Mathematicae 74.1 (1997): 123-133. <http://eudml.org/doc/210495>.

@article{Weisz1997,
abstract = {We introduce p-quasilocal operators and prove that if a sublinear operator T is p-quasilocal and bounded from $L_∞$ to $L_∞$ then it is also bounded from the classical Hardy space $H_p(T)$ to $L_p$ (0 < p ≤ 1). As an application it is shown that the maximal operator of the one-parameter Cesàro means of a distribution is bounded from $H_p(T)$ to $L_p$ (3/4 < p ≤ ∞) and is of weak type $(L_1,L_1)$. We define the two-dimensional dyadic hybrid Hardy space $H_\{1\}^\{♯\}(T^2)$ and verify that the maximal operator of the Cesàro means of a two-dimensional function is of weak type $(H_\{1\}^\{♯\}(T^2),L_1)$. So we deduce that the two-parameter Cesàro means of a function $f ∈ H_1^\{♯\}(T^2) ⊃ Llog L$ converge a.e. to the function in question.},
author = {Weisz, Ferenc},
journal = {Colloquium Mathematicae},
keywords = {p-atom; Hardy spaces; Cesàro summability; atomic decomposition; p-quasilocal operator; interpolation; trigonometric Fourier series; Cesàro maximal operator; Hardy-Lorentz spaces; double Fourier series},
language = {eng},
number = {1},
pages = {123-133},
title = {Cesàro summability of one- and two-dimensional trigonometric-Fourier series},
url = {http://eudml.org/doc/210495},
volume = {74},
year = {1997},
}

TY - JOUR
AU - Weisz, Ferenc
TI - Cesàro summability of one- and two-dimensional trigonometric-Fourier series
JO - Colloquium Mathematicae
PY - 1997
VL - 74
IS - 1
SP - 123
EP - 133
AB - We introduce p-quasilocal operators and prove that if a sublinear operator T is p-quasilocal and bounded from $L_∞$ to $L_∞$ then it is also bounded from the classical Hardy space $H_p(T)$ to $L_p$ (0 < p ≤ 1). As an application it is shown that the maximal operator of the one-parameter Cesàro means of a distribution is bounded from $H_p(T)$ to $L_p$ (3/4 < p ≤ ∞) and is of weak type $(L_1,L_1)$. We define the two-dimensional dyadic hybrid Hardy space $H_{1}^{♯}(T^2)$ and verify that the maximal operator of the Cesàro means of a two-dimensional function is of weak type $(H_{1}^{♯}(T^2),L_1)$. So we deduce that the two-parameter Cesàro means of a function $f ∈ H_1^{♯}(T^2) ⊃ Llog L$ converge a.e. to the function in question.
LA - eng
KW - p-atom; Hardy spaces; Cesàro summability; atomic decomposition; p-quasilocal operator; interpolation; trigonometric Fourier series; Cesàro maximal operator; Hardy-Lorentz spaces; double Fourier series
UR - http://eudml.org/doc/210495
ER -

References

top
  1. [1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129 Academic Press, New York, 1988. Zbl0647.46057
  2. [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. Zbl0344.46071
  3. [3] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class H p , Trans. Amer. Math. Soc. 157 (1971), 137-153. Zbl0223.30048
  4. [4] R. R. Coifman, A real variable characterization of H p , Studia Math. 51 (1974), 269-274. Zbl0289.46037
  5. [5] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
  6. [6] P. Duren, Theory of H p Spaces, Academic Press, New York, 1970. Zbl0215.20203
  7. [7] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 1, Springer, Berlin, 1982. 
  8. [8] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982. 
  9. [9] C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between H p spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. Zbl0285.41006
  10. [10] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-194. Zbl0257.46078
  11. [11] N. J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 558-591. Zbl0065.05303
  12. [12] N. Fujii, A maximal inequality for H 1 -functions on a generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), 111-116. Zbl0415.43014
  13. [13] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. Math. Monographs 75, Amer. Math. Soc. 75, Providence, R.I., 1989. 
  14. [14] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132. Zbl65.0266.01
  15. [15] F. Móricz, F. Schipp and W. R. Wade, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329 (1992), 131-140. Zbl0795.42016
  16. [16] N. M. Rivière and Y. Sagher, Interpolation between L and H 1 , the real method, J. Funct. Anal. 14 (1973), 401-409. Zbl0295.46056
  17. [17] F. Schipp, Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 (1975), 189-195. 
  18. [18] F. Schipp and P. Simon, On some ( H , L 1 ) -type maximal inequalities with respect to the Walsh-Paley system, in: Functions, Series, Operators, Budapest, 1980, Colloq. Math. Soc. János Bolyai 35, North-Holland, Amsterdam, 1981, 1039-1045. 
  19. [19] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
  20. [20] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. Zbl0621.42001
  21. [21] F. Weisz, Cesàro summability of one- and two-dimensional Walsh-Fourier series, Anal. Math. 22 (1996), 229-242. Zbl0866.42020
  22. [22] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. Zbl0796.60049
  23. [23] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.