Immersions of module varieties

Grzegorz Zwara

Colloquium Mathematicae (1999)

  • Volume: 82, Issue: 2, page 287-299
  • ISSN: 0010-1354

Abstract

top
We show that a homomorphism of algebras is a categorical epimorphism if and only if all induced morphisms of the associated module varieties are immersions. This enables us to classify all minimal singularities in the subvarieties of modules from homogeneous standard tubes.

How to cite

top

Zwara, Grzegorz. "Immersions of module varieties." Colloquium Mathematicae 82.2 (1999): 287-299. <http://eudml.org/doc/210763>.

@article{Zwara1999,
abstract = {We show that a homomorphism of algebras is a categorical epimorphism if and only if all induced morphisms of the associated module varieties are immersions. This enables us to classify all minimal singularities in the subvarieties of modules from homogeneous standard tubes.},
author = {Zwara, Grzegorz},
journal = {Colloquium Mathematicae},
keywords = {module varieties; regular morphisms; immersions; finitely generated algebras; equivariant morphisms; affine varieties; epimorphisms; minimal singularities; Auslander-Reiten quivers},
language = {eng},
number = {2},
pages = {287-299},
title = {Immersions of module varieties},
url = {http://eudml.org/doc/210763},
volume = {82},
year = {1999},
}

TY - JOUR
AU - Zwara, Grzegorz
TI - Immersions of module varieties
JO - Colloquium Mathematicae
PY - 1999
VL - 82
IS - 2
SP - 287
EP - 299
AB - We show that a homomorphism of algebras is a categorical epimorphism if and only if all induced morphisms of the associated module varieties are immersions. This enables us to classify all minimal singularities in the subvarieties of modules from homogeneous standard tubes.
LA - eng
KW - module varieties; regular morphisms; immersions; finitely generated algebras; equivariant morphisms; affine varieties; epimorphisms; minimal singularities; Auslander-Reiten quivers
UR - http://eudml.org/doc/210763
ER -

References

top
  1. [1] S. Abeasis, A. Del Fra and H. Kraft, The geometry of representations of A m , Math. Ann. 256 (1981), 401-418. Zbl0477.14027
  2. [2] V. I. Arnold, On matrices depending on parameters, Russian Math. Surveys 26 (1971), 29-43. 
  3. [3] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995. 
  4. [4] K. Bongartz, A geometric version of the Morita equivalence, J. Algebra 139 (1991), 159-171. Zbl0787.16011
  5. [5] K. Bongartz, Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv. 63 (1994), 575-611. Zbl0832.16008
  6. [6] W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451-483. Zbl0661.16026
  7. [7] E D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer, 1995. Zbl0819.13001
  8. [8] A. Grothendieck et J. A. Dieudonné, Éléments de géométrie algébrique IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967). Zbl0203.23301
  9. [9] R. Hartshorn, Algebraic Geometry, Springer, 1977. 
  10. [10] W. Hesselink, Singularities in the nilpotent scheme of a classical group, Trans. Amer. Math. Soc. 222 (1976), 1-32. Zbl0332.14017
  11. [11] K J. T. Knight, On epimorphisms of non-commutative rings, Proc. Cambridge Philos. Soc. 68 (1970), 589-600. Zbl0216.33302
  12. [12] H. Kraft and C. Procesi, Minimal singularities in G l n , Invent. Math. 62 (1981), 503-515. Zbl0478.14040
  13. [13] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  14. [14] L. Silver, Noncommutative localizations and applications, J. Algebra 7 (1967), 44-76. Zbl0173.03305
  15. [15] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math. 815, Springer, 1980. Zbl0441.14002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.