Immersions of module varieties
Colloquium Mathematicae (1999)
- Volume: 82, Issue: 2, page 287-299
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topZwara, Grzegorz. "Immersions of module varieties." Colloquium Mathematicae 82.2 (1999): 287-299. <http://eudml.org/doc/210763>.
@article{Zwara1999,
abstract = {We show that a homomorphism of algebras is a categorical epimorphism if and only if all induced morphisms of the associated module varieties are immersions. This enables us to classify all minimal singularities in the subvarieties of modules from homogeneous standard tubes.},
author = {Zwara, Grzegorz},
journal = {Colloquium Mathematicae},
keywords = {module varieties; regular morphisms; immersions; finitely generated algebras; equivariant morphisms; affine varieties; epimorphisms; minimal singularities; Auslander-Reiten quivers},
language = {eng},
number = {2},
pages = {287-299},
title = {Immersions of module varieties},
url = {http://eudml.org/doc/210763},
volume = {82},
year = {1999},
}
TY - JOUR
AU - Zwara, Grzegorz
TI - Immersions of module varieties
JO - Colloquium Mathematicae
PY - 1999
VL - 82
IS - 2
SP - 287
EP - 299
AB - We show that a homomorphism of algebras is a categorical epimorphism if and only if all induced morphisms of the associated module varieties are immersions. This enables us to classify all minimal singularities in the subvarieties of modules from homogeneous standard tubes.
LA - eng
KW - module varieties; regular morphisms; immersions; finitely generated algebras; equivariant morphisms; affine varieties; epimorphisms; minimal singularities; Auslander-Reiten quivers
UR - http://eudml.org/doc/210763
ER -
References
top- [1] S. Abeasis, A. Del Fra and H. Kraft, The geometry of representations of , Math. Ann. 256 (1981), 401-418. Zbl0477.14027
- [2] V. I. Arnold, On matrices depending on parameters, Russian Math. Surveys 26 (1971), 29-43.
- [3] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
- [4] K. Bongartz, A geometric version of the Morita equivalence, J. Algebra 139 (1991), 159-171. Zbl0787.16011
- [5] K. Bongartz, Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv. 63 (1994), 575-611. Zbl0832.16008
- [6] W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451-483. Zbl0661.16026
- [7] E D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer, 1995. Zbl0819.13001
- [8] A. Grothendieck et J. A. Dieudonné, Éléments de géométrie algébrique IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967). Zbl0203.23301
- [9] R. Hartshorn, Algebraic Geometry, Springer, 1977.
- [10] W. Hesselink, Singularities in the nilpotent scheme of a classical group, Trans. Amer. Math. Soc. 222 (1976), 1-32. Zbl0332.14017
- [11] K J. T. Knight, On epimorphisms of non-commutative rings, Proc. Cambridge Philos. Soc. 68 (1970), 589-600. Zbl0216.33302
- [12] H. Kraft and C. Procesi, Minimal singularities in , Invent. Math. 62 (1981), 503-515. Zbl0478.14040
- [13] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [14] L. Silver, Noncommutative localizations and applications, J. Algebra 7 (1967), 44-76. Zbl0173.03305
- [15] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math. 815, Springer, 1980. Zbl0441.14002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.