Interpolation sets for Fréchet measures

J. Caggiano

Colloquium Mathematicae (2000)

  • Volume: 83, Issue: 2, page 161-172
  • ISSN: 0010-1354

Abstract

top
We introduce various classes of interpolation sets for Fréchet measures-the measure-theoretic analogues of bounded multilinear forms on products of C(K) spaces.

How to cite

top

Caggiano, J.. "Interpolation sets for Fréchet measures." Colloquium Mathematicae 83.2 (2000): 161-172. <http://eudml.org/doc/210778>.

@article{Caggiano2000,
abstract = {We introduce various classes of interpolation sets for Fréchet measures-the measure-theoretic analogues of bounded multilinear forms on products of C(K) spaces.},
author = {Caggiano, J.},
journal = {Colloquium Mathematicae},
keywords = {Sidon set; interpolation properties; Fourier transforms; Fréchet measures},
language = {eng},
number = {2},
pages = {161-172},
title = {Interpolation sets for Fréchet measures},
url = {http://eudml.org/doc/210778},
volume = {83},
year = {2000},
}

TY - JOUR
AU - Caggiano, J.
TI - Interpolation sets for Fréchet measures
JO - Colloquium Mathematicae
PY - 2000
VL - 83
IS - 2
SP - 161
EP - 172
AB - We introduce various classes of interpolation sets for Fréchet measures-the measure-theoretic analogues of bounded multilinear forms on products of C(K) spaces.
LA - eng
KW - Sidon set; interpolation properties; Fourier transforms; Fréchet measures
UR - http://eudml.org/doc/210778
ER -

References

top
  1. [B1] R. C. Blei, Multi-dimensional extensions of the Grothendieck inequality and applications, Ark. Mat. 17 (1979), 51-68. Zbl0461.43005
  2. [B2] R. C. Blei, Rosenthal sets that cannot be sup-norm partitioned and an application to tensor products, Colloq. Math. 37 (1977), 295-298. Zbl0369.43004
  3. [B3] R. C. Blei, Fractional Cartesian products of sets, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 2, 79-105. Zbl0381.43003
  4. [B4] R. C. Blei, Fractional dimensions and bounded fractional forms, Mem. Amer. Math. Soc. 331 (1985). 
  5. [B5] R. C. Blei, Projectively bounded Fréchet measures, Trans. Amer. Math. Soc. 348 (1996), 4409-4432. Zbl0882.28012
  6. [BS] R. C. Blei and J. Schmerl, Combinatorial dimension and fractional Cartesian products, Proc. Amer. Math. Soc. 120 (1994), 73-77. Zbl0788.90048
  7. [CS] E. Christensen and A. M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), 151-181. Zbl0622.46040
  8. [D] A. M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973), 31-40. Zbl0264.46055
  9. [GMc] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grundlehren Math. Wiss. 238, Springer, New York, 1979. 
  10. [GS1] C. C. Graham and B. M. Schreiber, Bimeasure algebras on LCA groups, Pacific J. Math. 115 (1984), 91-127. Zbl0502.43005
  11. [GS2] C. C. Graham and B. M. Schreiber, Sets of interpolation for Fourier transforms of bimeasures, Colloq. Math. 51 (1987), 149-154. Zbl0629.43006
  12. [GS3] C. C. Graham and B. M. Schreiber, Projections in spaces of bimeasures, Canad. Math. Bull. 31 (1988), 19-25. Zbl0617.28013
  13. [G] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paulo 8 (1956), 1-79. Zbl0074.32303
  14. [LP] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in p -spaces and their applications, Studia Math. 29 (1968), 275-326. Zbl0183.40501
  15. [R] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227. Zbl0091.05802
  16. [V] N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Funct. Anal. 16 (1974), 83-100. 
  17. [Y] K. Ylinen, Noncommutative Fourier transforms of bounded bilinear forms and completely bounded multilinear operators, ibid. 79 (1988), 144-165. Zbl0663.46053
  18. [ZS] G. Zhao and B. M. Schreiber, Algebras of multilinear forms on groups, in: Contemp. Math. 189, Amer. Math. Soc., 1995, 497-511. Zbl0853.43004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.