Interpolation sets for Fréchet measures
Colloquium Mathematicae (2000)
- Volume: 83, Issue: 2, page 161-172
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topCaggiano, J.. "Interpolation sets for Fréchet measures." Colloquium Mathematicae 83.2 (2000): 161-172. <http://eudml.org/doc/210778>.
@article{Caggiano2000,
abstract = {We introduce various classes of interpolation sets for Fréchet measures-the measure-theoretic analogues of bounded multilinear forms on products of C(K) spaces.},
author = {Caggiano, J.},
journal = {Colloquium Mathematicae},
keywords = {Sidon set; interpolation properties; Fourier transforms; Fréchet measures},
language = {eng},
number = {2},
pages = {161-172},
title = {Interpolation sets for Fréchet measures},
url = {http://eudml.org/doc/210778},
volume = {83},
year = {2000},
}
TY - JOUR
AU - Caggiano, J.
TI - Interpolation sets for Fréchet measures
JO - Colloquium Mathematicae
PY - 2000
VL - 83
IS - 2
SP - 161
EP - 172
AB - We introduce various classes of interpolation sets for Fréchet measures-the measure-theoretic analogues of bounded multilinear forms on products of C(K) spaces.
LA - eng
KW - Sidon set; interpolation properties; Fourier transforms; Fréchet measures
UR - http://eudml.org/doc/210778
ER -
References
top- [B1] R. C. Blei, Multi-dimensional extensions of the Grothendieck inequality and applications, Ark. Mat. 17 (1979), 51-68. Zbl0461.43005
- [B2] R. C. Blei, Rosenthal sets that cannot be sup-norm partitioned and an application to tensor products, Colloq. Math. 37 (1977), 295-298. Zbl0369.43004
- [B3] R. C. Blei, Fractional Cartesian products of sets, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 2, 79-105. Zbl0381.43003
- [B4] R. C. Blei, Fractional dimensions and bounded fractional forms, Mem. Amer. Math. Soc. 331 (1985).
- [B5] R. C. Blei, Projectively bounded Fréchet measures, Trans. Amer. Math. Soc. 348 (1996), 4409-4432. Zbl0882.28012
- [BS] R. C. Blei and J. Schmerl, Combinatorial dimension and fractional Cartesian products, Proc. Amer. Math. Soc. 120 (1994), 73-77. Zbl0788.90048
- [CS] E. Christensen and A. M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), 151-181. Zbl0622.46040
- [D] A. M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973), 31-40. Zbl0264.46055
- [GMc] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grundlehren Math. Wiss. 238, Springer, New York, 1979.
- [GS1] C. C. Graham and B. M. Schreiber, Bimeasure algebras on LCA groups, Pacific J. Math. 115 (1984), 91-127. Zbl0502.43005
- [GS2] C. C. Graham and B. M. Schreiber, Sets of interpolation for Fourier transforms of bimeasures, Colloq. Math. 51 (1987), 149-154. Zbl0629.43006
- [GS3] C. C. Graham and B. M. Schreiber, Projections in spaces of bimeasures, Canad. Math. Bull. 31 (1988), 19-25. Zbl0617.28013
- [G] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paulo 8 (1956), 1-79. Zbl0074.32303
- [LP] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in -spaces and their applications, Studia Math. 29 (1968), 275-326. Zbl0183.40501
- [R] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227. Zbl0091.05802
- [V] N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Funct. Anal. 16 (1974), 83-100.
- [Y] K. Ylinen, Noncommutative Fourier transforms of bounded bilinear forms and completely bounded multilinear operators, ibid. 79 (1988), 144-165. Zbl0663.46053
- [ZS] G. Zhao and B. M. Schreiber, Algebras of multilinear forms on groups, in: Contemp. Math. 189, Amer. Math. Soc., 1995, 497-511. Zbl0853.43004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.