Fractional cartesian products of sets

Ron C. Blei

Annales de l'institut Fourier (1979)

  • Volume: 29, Issue: 2, page 79-105
  • ISSN: 0373-0956

Abstract

top
Let E be a subset of a discrete abelian group whose compact dual is G . E is exactly p -Sidon (respectively, exactly non- p -Sidon) when ( * ) C E ( G ) r holds if and only if r [ p , ] (respectively, r ( p , ) ). E is said to be exactly Λ β (respectively, exactly non- Λ β ) if E has the property ( * * ) every f L E 2 ( G ) satisfies G exp ( λ | f | 2 / α < , for all λ > 0 , if and only if α [ β , ) (respectively, α ( β , ) ).In this paper, for every p [ 1 , 2 ) and β [ 1 , ) , we display sets which are exactly p -Sidon, exactly non- p -Sidon, exactly Λ β and exactly non- Λ β .

How to cite

top

Blei, Ron C.. "Fractional cartesian products of sets." Annales de l'institut Fourier 29.2 (1979): 79-105. <http://eudml.org/doc/74413>.

@article{Blei1979,
abstract = {Let $E$ be a subset of a discrete abelian group whose compact dual is $G$. $E$ is exactly $p$-Sidon (respectively, exactly non-$p$-Sidon) when$(*)\hspace\{142.26378pt\}C_E(G)^\wedge \subset \ell ^r$ holds if and only if $r\in [p,\infty ]$ (respectively, $r\in (p,\infty )$). $E$ is said to be exactly $\Lambda ^\beta $ (respectively, exactly non-$\Lambda ^\beta $) if $E$ has the property$(**)\hspace\{28.45274pt\}\text\{every\} \displaystyle \{f\in L^2_E(G) \text\{satisfies\} \int _G \{\rm exp\} (\lambda |f|^\{2/\alpha \}&lt; \infty , \text\{for\} \text\{all\} \lambda &gt;0,\}$ if and only if $\alpha \in [\beta ,\infty )$ (respectively, $\alpha \in (\beta ,\infty )$).In this paper, for every $p\in [1,2)$ and $\beta \in [1,\infty )$, we display sets which are exactly $p$-Sidon, exactly non-$p$-Sidon, exactly $\Lambda ^\beta $ and exactly non-$\Lambda ^\beta $.},
author = {Blei, Ron C.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {79-105},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fractional cartesian products of sets},
url = {http://eudml.org/doc/74413},
volume = {29},
year = {1979},
}

TY - JOUR
AU - Blei, Ron C.
TI - Fractional cartesian products of sets
JO - Annales de l'institut Fourier
PY - 1979
PB - Association des Annales de l'Institut Fourier
VL - 29
IS - 2
SP - 79
EP - 105
AB - Let $E$ be a subset of a discrete abelian group whose compact dual is $G$. $E$ is exactly $p$-Sidon (respectively, exactly non-$p$-Sidon) when$(*)\hspace{142.26378pt}C_E(G)^\wedge \subset \ell ^r$ holds if and only if $r\in [p,\infty ]$ (respectively, $r\in (p,\infty )$). $E$ is said to be exactly $\Lambda ^\beta $ (respectively, exactly non-$\Lambda ^\beta $) if $E$ has the property$(**)\hspace{28.45274pt}\text{every} \displaystyle {f\in L^2_E(G) \text{satisfies} \int _G {\rm exp} (\lambda |f|^{2/\alpha }&lt; \infty , \text{for} \text{all} \lambda &gt;0,}$ if and only if $\alpha \in [\beta ,\infty )$ (respectively, $\alpha \in (\beta ,\infty )$).In this paper, for every $p\in [1,2)$ and $\beta \in [1,\infty )$, we display sets which are exactly $p$-Sidon, exactly non-$p$-Sidon, exactly $\Lambda ^\beta $ and exactly non-$\Lambda ^\beta $.
LA - eng
UR - http://eudml.org/doc/74413
ER -

References

top
  1. [1] R. C. BLEI, Multidimensional extensions of the Grothendieck inequality (to appear in Arkiv für Mathematik). Zbl0461.43005
  2. [2] A. BONAMI, Étude des coefficients de Fourier des fonctions de Lp(G), Ann. Inst. Fourier, Grenoble, 20 (1970), 335-402. Zbl0195.42501MR44 #727
  3. [3] M. BOZEJKO and T. PYTLIK, Some types of lacunary Fourier series, Colloq. Math., 25 (1972), 117-124. Zbl0249.43013MR46 #4106
  4. [4] R. E. EDWARDS and K. A. ROSS, p-Sidon sets, J. of Functional Anal., 15 (1974), 404-427. Zbl0273.43007MR50 #10693
  5. [5] A. FIGÀ-TALAMANCA, An example in the theory of lacunary Fourier series, Boll. Unione Mat. Ital., 3 (1970), 375-378. Zbl0194.37001MR42 #762
  6. [6] G. W. JOHNSON and G. S. WOODWARD, On p-Sidon sets, Indiana Univ. Math. J., 24 (1974), 161-167. Zbl0285.43006MR50 #2821
  7. [7] J. E. LITTLEWOOD, On bounded bilinear forms in an infinite number of variables, Quartely J. Math., 1 (1930), 164-174. Zbl56.0335.01JFM56.0335.01
  8. [8] G. PISIER, Ensembles de Sidon et processus gaussiens (preprint). Zbl0374.43003
  9. [9] W. RUDIN, Trigonometric series with gaps, J. Math. Mechanics, 9 (1960), 203-227. Zbl0091.05802MR22 #6972
  10. [10] W. RUDIN, Fourier Analysis on Groups, Interscience, New York, 1967. Zbl0698.43001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.