Fractional cartesian products of sets

Ron C. Blei

Annales de l'institut Fourier (1979)

  • Volume: 29, Issue: 2, page 79-105
  • ISSN: 0373-0956

Abstract

top
Let E be a subset of a discrete abelian group whose compact dual is G . E is exactly p -Sidon (respectively, exactly non- p -Sidon) when ( * ) C E ( G ) r holds if and only if r [ p , ] (respectively, r ( p , ) ). E is said to be exactly Λ β (respectively, exactly non- Λ β ) if E has the property ( * * ) every f L E 2 ( G ) satisfies G exp ( λ | f | 2 / α < , for all λ > 0 , if and only if α [ β , ) (respectively, α ( β , ) ).In this paper, for every p [ 1 , 2 ) and β [ 1 , ) , we display sets which are exactly p -Sidon, exactly non- p -Sidon, exactly Λ β and exactly non- Λ β .

How to cite

top

Blei, Ron C.. "Fractional cartesian products of sets." Annales de l'institut Fourier 29.2 (1979): 79-105. <http://eudml.org/doc/74413>.

@article{Blei1979,
abstract = {Let $E$ be a subset of a discrete abelian group whose compact dual is $G$. $E$ is exactly $p$-Sidon (respectively, exactly non-$p$-Sidon) when$(*)\hspace\{142.26378pt\}C_E(G)^\wedge \subset \ell ^r$ holds if and only if $r\in [p,\infty ]$ (respectively, $r\in (p,\infty )$). $E$ is said to be exactly $\Lambda ^\beta $ (respectively, exactly non-$\Lambda ^\beta $) if $E$ has the property$(**)\hspace\{28.45274pt\}\text\{every\} \displaystyle \{f\in L^2_E(G) \text\{satisfies\} \int _G \{\rm exp\} (\lambda |f|^\{2/\alpha \}&lt; \infty , \text\{for\} \text\{all\} \lambda &gt;0,\}$ if and only if $\alpha \in [\beta ,\infty )$ (respectively, $\alpha \in (\beta ,\infty )$).In this paper, for every $p\in [1,2)$ and $\beta \in [1,\infty )$, we display sets which are exactly $p$-Sidon, exactly non-$p$-Sidon, exactly $\Lambda ^\beta $ and exactly non-$\Lambda ^\beta $.},
author = {Blei, Ron C.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {79-105},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fractional cartesian products of sets},
url = {http://eudml.org/doc/74413},
volume = {29},
year = {1979},
}

TY - JOUR
AU - Blei, Ron C.
TI - Fractional cartesian products of sets
JO - Annales de l'institut Fourier
PY - 1979
PB - Association des Annales de l'Institut Fourier
VL - 29
IS - 2
SP - 79
EP - 105
AB - Let $E$ be a subset of a discrete abelian group whose compact dual is $G$. $E$ is exactly $p$-Sidon (respectively, exactly non-$p$-Sidon) when$(*)\hspace{142.26378pt}C_E(G)^\wedge \subset \ell ^r$ holds if and only if $r\in [p,\infty ]$ (respectively, $r\in (p,\infty )$). $E$ is said to be exactly $\Lambda ^\beta $ (respectively, exactly non-$\Lambda ^\beta $) if $E$ has the property$(**)\hspace{28.45274pt}\text{every} \displaystyle {f\in L^2_E(G) \text{satisfies} \int _G {\rm exp} (\lambda |f|^{2/\alpha }&lt; \infty , \text{for} \text{all} \lambda &gt;0,}$ if and only if $\alpha \in [\beta ,\infty )$ (respectively, $\alpha \in (\beta ,\infty )$).In this paper, for every $p\in [1,2)$ and $\beta \in [1,\infty )$, we display sets which are exactly $p$-Sidon, exactly non-$p$-Sidon, exactly $\Lambda ^\beta $ and exactly non-$\Lambda ^\beta $.
LA - eng
UR - http://eudml.org/doc/74413
ER -

References

top
  1. [1] R. C. BLEI, Multidimensional extensions of the Grothendieck inequality (to appear in Arkiv für Mathematik). Zbl0461.43005
  2. [2] A. BONAMI, Étude des coefficients de Fourier des fonctions de Lp(G), Ann. Inst. Fourier, Grenoble, 20 (1970), 335-402. Zbl0195.42501MR44 #727
  3. [3] M. BOZEJKO and T. PYTLIK, Some types of lacunary Fourier series, Colloq. Math., 25 (1972), 117-124. Zbl0249.43013MR46 #4106
  4. [4] R. E. EDWARDS and K. A. ROSS, p-Sidon sets, J. of Functional Anal., 15 (1974), 404-427. Zbl0273.43007MR50 #10693
  5. [5] A. FIGÀ-TALAMANCA, An example in the theory of lacunary Fourier series, Boll. Unione Mat. Ital., 3 (1970), 375-378. Zbl0194.37001MR42 #762
  6. [6] G. W. JOHNSON and G. S. WOODWARD, On p-Sidon sets, Indiana Univ. Math. J., 24 (1974), 161-167. Zbl0285.43006MR50 #2821
  7. [7] J. E. LITTLEWOOD, On bounded bilinear forms in an infinite number of variables, Quartely J. Math., 1 (1930), 164-174. Zbl56.0335.01JFM56.0335.01
  8. [8] G. PISIER, Ensembles de Sidon et processus gaussiens (preprint). Zbl0374.43003
  9. [9] W. RUDIN, Trigonometric series with gaps, J. Math. Mechanics, 9 (1960), 203-227. Zbl0091.05802MR22 #6972
  10. [10] W. RUDIN, Fourier Analysis on Groups, Interscience, New York, 1967. Zbl0698.43001

NotesEmbed ?

top

You must be logged in to post comments.