Actions of parabolic subgroups in GL_n on unipotent normal subgroups and quasi-hereditary algebras
Colloquium Mathematicae (2000)
- Volume: 83, Issue: 2, page 281-294
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [B] N. Bourbaki, Groupes et algèbres de Lie, Chaps. 4-6, Hermann, Paris, 1975.
- [BH1] T. Brüstle and L. Hille, z Finite, tame and wild actions of parabolic subgroups in GL(V) on certain unipotent subgroups, J. Algebra 226 (2000), 347-360. Zbl0968.20023
- [BH2] T. Brüstle and L. Hille, Matrices over upper triangular bimodules and Δ-filtered modules over quasi-hereditary algebras, this issue, 295-303. Zbl0978.16009
- [BHRR] T. Brüstle, L. Hille, C. M. Ringel and G. Röhrle, Modules without selfextensions over the Auslander algebra of , Algebras Represent. Theory 2 (1999), 295-312. Zbl0971.16007
- [BHRZ] T. Brüstle, L. Hille, G. Röhrle and G. Zwara, The Bruhat-Chevalley order of parabolic group actions in general linear groups and degeneration for delta-filtered modules, Adv. Math. 148 (1999), 203-242 Zbl0953.20037
- [DR] V. Dlab and C. M. Ringel, The module theoretical approach to quasi-hereditary algebras, in: London Math. Soc. Lecture Note Ser. 168, Cambridge Univ. Press, Cambridge, 1992, 200-224.
- [GR] P. Gabriel and A. V. Roiter, Representations of Finite-Dimensional Algebras, Encyclopaedia Math. Sci. 73, Algebra VIII, Springer, 1992.
- [HR] L. Hille and G. Röhrle, A classification of parabolic subgroups in classical groups with a finite number of orbits on the unipotent radical, Transform. Groups 4 (1999), 35-52. Zbl0924.20035
- [Ri] R. Richardson, Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc. 6 (1974), 21-24. Zbl0287.20036
- [R] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
- [S] T. A. Springer, Linear Algebraic Groups, Progr. Math. 9, Birkhäuser, 1981. Zbl0453.14022