Page 1

Displaying 1 – 19 of 19

Showing per page

A remark on power series rings.

Paul M. Cohn (1992)

Publicacions Matemàtiques

A trivializability principle for local rings is described which leads to a form of weak algorithm for local semifirs with a finitely generated maximal ideal whose powers meet in zero.

Actions of parabolic subgroups in GL_n on unipotent normal subgroups and quasi-hereditary algebras

Thomas Brüstle, Lutz Hille (2000)

Colloquium Mathematicae

Let R be a parabolic subgroup in G L n . It acts on its unipotent radical R u and on any unipotent normal subgroup U via conjugation. Let Λ be the path algebra k t of a directed Dynkin quiver of type with t vertices and B a subbimodule of the radical of Λ viewed as a Λ-bimodule. Each parabolic subgroup R is the group of automorphisms of an algebra Λ(d), which is Morita equivalent to Λ. The action of R on U can be described using matrices over the bimodule B. The advantage of this description is that each...

Matrices over upper triangular bimodules and Δ-filtered modules over quasi-hereditary algebras

Thomas Brüstle, Lutz Hille (2000)

Colloquium Mathematicae

Let Λ be a directed finite-dimensional algebra over a field k, and let B be an upper triangular bimodule over Λ. Then we show that the category of B-matrices mat B admits a projective generator P whose endomorphism algebra End P is quasi-hereditary. If A denotes the opposite algebra of End P, then the functor Hom(P,-) induces an equivalence between mat B and the category ℱ(Δ) of Δ-filtered A-modules. Moreover, any quasi-hereditary algebra whose category of Δ-filtered modules is equivalent to mat...

Monoid rings that are firs.

Andreu Pitarch (1990)

Publicacions Matemàtiques

It is well known that the monoid ring of the free product of a free group and a free monoid over a skew field is a fir. We give a proof of this fact that is more direct than the proof in the literature.

On algebraic closures.

R. Raphael (1992)

Publicacions Matemàtiques

This is a description of some different approaches which have been taken to the problem of generalizing the algebraic closure of a field. Work surveyed is by Enoch and Hochster (commutative algebra), Raphael (categories and rings of quotients), Borho (the polynomial approach), and Carson (logic).Later work and applications are given.

Currently displaying 1 – 19 of 19

Page 1