'The mother of all continued fractions'
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 1, page 109-123
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [AF] R. L. Adler and L. Flatto, The backward continued fraction map and geodesic flow, Ergodic Theory Dynam. Systems 4 (1984), 487-492. Zbl0563.58019
- [B] W. Bosma, Approximation by mediants, Math. Comp. 54 (1990), 421-434. Zbl0697.10042
- [BY] G. Brown and Q. H. Yin, Metrical theory for Farey continued fractions, Osaka J. Math. 33 (1996), 951-970. Zbl0880.11057
- [C] A. L. Cauchy, Oeuvres, Gauthier-Villars, Paris, 1890-1895.
- [G] J. R. Goldman, Hurwitz sequences the Farey process and general continued fractions, Adv. Math. 72 (1988), 239-260. Zbl0667.10007
- [I] S. Ito, Algorithms with mediant convergents and their metrical theory, Osaka J. Math. 26 (1989), 557-578. Zbl0702.11046
- [Kh] A. Ya. Khintchine, Metrische Kettenbruchproblem, Compositio Math. 1 (1935), 361-382.
- [K] C. Kraaikamp, A new class of continued fraction expansions, Acta Arith. 57 (1991), 1-39. Zbl0721.11029
- [L] J. Lehner, Semiregular continued fractions whose partial denominators are or , in: The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions (Brooklyn, NY, 1992), Contemp. Math. 169, Amer. Math. Soc., Providence, RI, 1994, 407-410. Zbl0814.11008
- [R] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 472-493. Zbl0079.08901
- [Rich] I. Richards, Continued fractions without tears, Math. Mag. 54 (1981), 163-171. Zbl0466.10003
- [Z] D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, Berlin, 1981.