Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients
Yusuf Hartono; Cor Kraaikamp; Fritz Schweiger
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 2, page 497-516
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topHartono, Yusuf, Kraaikamp, Cor, and Schweiger, Fritz. "Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients." Journal de théorie des nombres de Bordeaux 14.2 (2002): 497-516. <http://eudml.org/doc/248913>.
@article{Hartono2002,
abstract = {In this paper the Engel continued fraction (ECF) expansion of any $x \in (0,1)$ is introduced. Basic and ergodic properties of this expansion are studied. Also the relation between the ECF and F. Ryde’s monotonen, nicht-abnehmenden Kettenbruch (MNK) is studied.},
author = {Hartono, Yusuf, Kraaikamp, Cor, Schweiger, Fritz},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {continued fractions; Engel continued fraction expansion},
language = {eng},
number = {2},
pages = {497-516},
publisher = {Université Bordeaux I},
title = {Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients},
url = {http://eudml.org/doc/248913},
volume = {14},
year = {2002},
}
TY - JOUR
AU - Hartono, Yusuf
AU - Kraaikamp, Cor
AU - Schweiger, Fritz
TI - Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 497
EP - 516
AB - In this paper the Engel continued fraction (ECF) expansion of any $x \in (0,1)$ is introduced. Basic and ergodic properties of this expansion are studied. Also the relation between the ECF and F. Ryde’s monotonen, nicht-abnehmenden Kettenbruch (MNK) is studied.
LA - eng
KW - continued fractions; Engel continued fraction expansion
UR - http://eudml.org/doc/248913
ER -
References
top- [AF] R.L. Adler, L. Flatto, The backward continued fraction map and geodesic flow. Ergodic Theory Dynam. Systems4 (1984), no. 4, 487-492. MR 86h:58116 Zbl0563.58019MR779707
- [B] E. Borel, Sur les développements unitaires normaux. C. R. Acad. Sci. Paris225, (1947), 51. MR 9,292c Zbl0029.15303MR23007
- [DK] K. Dajani, C. Kraaikamp, The Mother of All Continued Fractions. Coll. Math.84/85 (2000), 109-123. Zbl0961.11027MR1778844
- [ERS] P. Erdös, A. Rényi, P. Szüsz, On Engel's and Sylvester's series. Ann. Univ. Sci. Budapest. Etvs. Sect. Math. 1 (1958), 7-32. MR 21#1288 Zbl0107.27002MR102496
- [G] J. Galambos, Representations of real numbers by infinite series. Lecture Notes in Mathematics502, Springer-Verlag, Berlin-New York, 1976. MR 58#27873 Zbl0322.10002MR568141
- [HL] P. Hubert, Y. Lacroix, Renormalization of algorithms in the probabilistic sense. New trends in probability and statistics, Vol. 4 (Palanga, 1996), 401-412, VSP, Utrecht, 1997. MR 2000c:11131 Zbl1040.11511MR1653625
- [K] C. Kraaikamp, A new class of continued fraction expansions. Acta Arith.57 (1991), 1-39. MR 92a:11090 Zbl0721.11029MR1093246
- [K2K] S. Kalpazidou, A. Knopfmacher, J. Knopfmacher, Lüroth-type alternating series representations for real numbers. Acta Arith.55 (1990), 311-322. MR 91i:11011 Zbl0702.11048MR1069185
- [Leh] J. Lehner, Semiregular continued fractions whose partial denominators are 1 or 2. Contemp. Math.169 (1994), 407-410. MR 95e:11011 Zbl0814.11008MR1292915
- [L] P. Lévy, Remarques sur un théorème de M. Émile Borel. C. R. Acad. Sci. Paris225 (1947), 918-919. MR 9,292d Zbl0029.15304MR23008
- [R] A. Rényi, A new approach to the theory of Engel's series. Ann. Univ. Sci. Budapest. Etvs Sect. Math.5 (1962), 25-32. MR 27#126 Zbl0232.10028MR150123
- [Ry1] F. Ryde, Eine neue Art monotoner Kettenbruchentwicklungen. Ark. Mat.1 (1951), 319-339. MR 13,115c Zbl0042.29602MR42457
- [Ry2] F. Ryde, Sur les fractions continues monotones nondécroissantes périodiques. Ark. Mat.1 (1951), 409-420. MR 13,115d Zbl0042.29603MR42458
- [Si] W. Sierpinski, Sur quelques algorithmes pour développer les nombres réels en séries. In: Oeuvres choisies Tome I, Warszawa1974, 236-254. MR 54#2405 MR414302
- [S1] F. Schweiger, Ergodische Theorie der Engelschen und SylvesterschenReihen. Czechoslovak Math. J.20 (95) 1970, 243-245. MR 41#3712; Czechoslovak Math. J.21 (96) 1971, 165. MR 43#2190 Zbl0197.34501MR259070
- [S2] F. Schweiger, Metrische Ergebnisse über den Kotangensalgorithmus. Acta Arith.26 (1975), 217-222. MR 51#10269 Zbl0261.10042MR374069
- [S3] F. Schweiger, Ergodic theory of fibred systems and metric number theory. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR 97h:11083 Zbl0819.11027MR1419320
- [T] M. Thaler, σ-endliche invariante Masse für die Engelschen Reihen. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl.116 (1979), no. 2, 46-48. MR 80j:28028 Zbl0412.10038
- [V] W. Vervaat, Success epochs in Bernoulli trials (with applications in number theory). Mathematical Centre Tracts 42, Mathematisch Centrum, Amsterdam, 1972. MR 48#7331 Zbl0267.60003MR328989
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.