Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients

Yusuf Hartono; Cor Kraaikamp; Fritz Schweiger

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 2, page 497-516
  • ISSN: 1246-7405

Abstract

top
In this paper the Engel continued fraction (ECF) expansion of any x ( 0 , 1 ) is introduced. Basic and ergodic properties of this expansion are studied. Also the relation between the ECF and F. Ryde’s monotonen, nicht-abnehmenden Kettenbruch (MNK) is studied.

How to cite

top

Hartono, Yusuf, Kraaikamp, Cor, and Schweiger, Fritz. "Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients." Journal de théorie des nombres de Bordeaux 14.2 (2002): 497-516. <http://eudml.org/doc/248913>.

@article{Hartono2002,
abstract = {In this paper the Engel continued fraction (ECF) expansion of any $x \in (0,1)$ is introduced. Basic and ergodic properties of this expansion are studied. Also the relation between the ECF and F. Ryde’s monotonen, nicht-abnehmenden Kettenbruch (MNK) is studied.},
author = {Hartono, Yusuf, Kraaikamp, Cor, Schweiger, Fritz},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {continued fractions; Engel continued fraction expansion},
language = {eng},
number = {2},
pages = {497-516},
publisher = {Université Bordeaux I},
title = {Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients},
url = {http://eudml.org/doc/248913},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Hartono, Yusuf
AU - Kraaikamp, Cor
AU - Schweiger, Fritz
TI - Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 497
EP - 516
AB - In this paper the Engel continued fraction (ECF) expansion of any $x \in (0,1)$ is introduced. Basic and ergodic properties of this expansion are studied. Also the relation between the ECF and F. Ryde’s monotonen, nicht-abnehmenden Kettenbruch (MNK) is studied.
LA - eng
KW - continued fractions; Engel continued fraction expansion
UR - http://eudml.org/doc/248913
ER -

References

top
  1. [AF] R.L. Adler, L. Flatto, The backward continued fraction map and geodesic flow. Ergodic Theory Dynam. Systems4 (1984), no. 4, 487-492. MR 86h:58116 Zbl0563.58019MR779707
  2. [B] E. Borel, Sur les développements unitaires normaux. C. R. Acad. Sci. Paris225, (1947), 51. MR 9,292c Zbl0029.15303MR23007
  3. [DK] K. Dajani, C. Kraaikamp, The Mother of All Continued Fractions. Coll. Math.84/85 (2000), 109-123. Zbl0961.11027MR1778844
  4. [ERS] P. Erdös, A. Rényi, P. Szüsz, On Engel's and Sylvester's series. Ann. Univ. Sci. Budapest. Etvs. Sect. Math. 1 (1958), 7-32. MR 21#1288 Zbl0107.27002MR102496
  5. [G] J. Galambos, Representations of real numbers by infinite series. Lecture Notes in Mathematics502, Springer-Verlag, Berlin-New York, 1976. MR 58#27873 Zbl0322.10002MR568141
  6. [HL] P. Hubert, Y. Lacroix, Renormalization of algorithms in the probabilistic sense. New trends in probability and statistics, Vol. 4 (Palanga, 1996), 401-412, VSP, Utrecht, 1997. MR 2000c:11131 Zbl1040.11511MR1653625
  7. [K] C. Kraaikamp, A new class of continued fraction expansions. Acta Arith.57 (1991), 1-39. MR 92a:11090 Zbl0721.11029MR1093246
  8. [K2K] S. Kalpazidou, A. Knopfmacher, J. Knopfmacher, Lüroth-type alternating series representations for real numbers. Acta Arith.55 (1990), 311-322. MR 91i:11011 Zbl0702.11048MR1069185
  9. [Leh] J. Lehner, Semiregular continued fractions whose partial denominators are 1 or 2. Contemp. Math.169 (1994), 407-410. MR 95e:11011 Zbl0814.11008MR1292915
  10. [L] P. Lévy, Remarques sur un théorème de M. Émile Borel. C. R. Acad. Sci. Paris225 (1947), 918-919. MR 9,292d Zbl0029.15304MR23008
  11. [R] A. Rényi, A new approach to the theory of Engel's series. Ann. Univ. Sci. Budapest. Etvs Sect. Math.5 (1962), 25-32. MR 27#126 Zbl0232.10028MR150123
  12. [Ry1] F. Ryde, Eine neue Art monotoner Kettenbruchentwicklungen. Ark. Mat.1 (1951), 319-339. MR 13,115c Zbl0042.29602MR42457
  13. [Ry2] F. Ryde, Sur les fractions continues monotones nondécroissantes périodiques. Ark. Mat.1 (1951), 409-420. MR 13,115d Zbl0042.29603MR42458
  14. [Si] W. Sierpinski, Sur quelques algorithmes pour développer les nombres réels en séries. In: Oeuvres choisies Tome I, Warszawa1974, 236-254. MR 54#2405 MR414302
  15. [S1] F. Schweiger, Ergodische Theorie der Engelschen und SylvesterschenReihen. Czechoslovak Math. J.20 (95) 1970, 243-245. MR 41#3712; Czechoslovak Math. J.21 (96) 1971, 165. MR 43#2190 Zbl0197.34501MR259070
  16. [S2] F. Schweiger, Metrische Ergebnisse über den Kotangensalgorithmus. Acta Arith.26 (1975), 217-222. MR 51#10269 Zbl0261.10042MR374069
  17. [S3] F. Schweiger, Ergodic theory of fibred systems and metric number theory. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR 97h:11083 Zbl0819.11027MR1419320
  18. [T] M. Thaler, σ-endliche invariante Masse für die Engelschen Reihen. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl.116 (1979), no. 2, 46-48. MR 80j:28028 Zbl0412.10038
  19. [V] W. Vervaat, Success epochs in Bernoulli trials (with applications in number theory). Mathematical Centre Tracts 42, Mathematisch Centrum, Amsterdam, 1972. MR 48#7331 Zbl0267.60003MR328989

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.