Ordered K-theoryand minimal symbolic dynamical systems

Christian Skau

Colloquium Mathematicae (2000)

  • Volume: 84/85, Issue: 1, page 203-227
  • ISSN: 0010-1354

Abstract

top
Recently a new invariant of K-theoretic nature has emerged which is potentially very useful for the study of symbolic systems. We give an outline of the theory behind this invariant. Then we demonstrate the relevance and power of the invariant, focusing on the families of substitution minimal systems and Toeplitz flows.

How to cite

top

Skau, Christian. "Ordered K-theoryand minimal symbolic dynamical systems." Colloquium Mathematicae 84/85.1 (2000): 203-227. <http://eudml.org/doc/210799>.

@article{Skau2000,
abstract = {Recently a new invariant of K-theoretic nature has emerged which is potentially very useful for the study of symbolic systems. We give an outline of the theory behind this invariant. Then we demonstrate the relevance and power of the invariant, focusing on the families of substitution minimal systems and Toeplitz flows.},
author = {Skau, Christian},
journal = {Colloquium Mathematicae},
keywords = {orbit equivalence; Cantor minimal system},
language = {eng},
number = {1},
pages = {203-227},
title = {Ordered K-theoryand minimal symbolic dynamical systems},
url = {http://eudml.org/doc/210799},
volume = {84/85},
year = {2000},
}

TY - JOUR
AU - Skau, Christian
TI - Ordered K-theoryand minimal symbolic dynamical systems
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 1
SP - 203
EP - 227
AB - Recently a new invariant of K-theoretic nature has emerged which is potentially very useful for the study of symbolic systems. We give an outline of the theory behind this invariant. Then we demonstrate the relevance and power of the invariant, focusing on the families of substitution minimal systems and Toeplitz flows.
LA - eng
KW - orbit equivalence; Cantor minimal system
UR - http://eudml.org/doc/210799
ER -

References

top
  1. [1] M. Boyle, Topological orbit equivanlence and factor maps in symbolic dynamics, Ph.D. thesis, Univ. of Washington, 1983. 
  2. [2] O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234. Zbl0264.46057
  3. [3] T. Downarowicz, The Choquet simplex of invariant measures for minimal flows, Israel J. Math. 74 (1991), 241-256. Zbl0746.58047
  4. [4] T. Downarowicz and F. Durand, Factors of Toeplitz flows and other almost 1-1 extensions over group rotations, preprint, 1998. Zbl1023.37004
  5. [5] T. Downarowicz and Y. Lacroix, Almost 1-1 extensions of Furstenberg-Weiss type and applications to Toeplitz flows, Studia Math. 130 (1998), 149-170. Zbl0916.28013
  6. [6] F. Durand, B. Host and C. Skau, Substitution dynamical systems, Bratteli diagrams, and dimension groups, Ergodic Theory Dynam. Systems, to appear. Zbl1044.46543
  7. [7] E. G. Effros, Dimensions and C*-algebras, CBMS Regional Conf. Ser. in Math. 46, Conf. Board Math. Sci. and Amer. Math. Soc., 1981. 
  8. [8] E. Effros, D. Handelman and C.-L. Shen, Dimension groups and their affine reprensentations, Amer. J. Math. 102 (1980), 385-407. Zbl0457.46047
  9. [9] G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite dimensional algebras, J. Algebra 38 (1976), 29-44. Zbl0323.46063
  10. [10] A. H. Forrest, K-groups associated with substitution minimal systems, Israel J. Math. 98 (1997), 101-139. Zbl0891.46042
  11. [11] T. Giordano, I. F. Putnam and C. F. Skau, Topological orbit equivalence and C*-crossed products, J. Reine Angew. Math. 469 (1995), 51-111. Zbl0834.46053
  12. [12] R. Gjerde and O. Johansen, Bratteli-Vershik models for Cantor minimal systems: Applications to Toeplitz flows, NB Ergodic Theory Dynam. Systems, to appear. Zbl0992.37008
  13. [13] E. Glasner and B. Weiss, Weak orbit equivalence of Cantor minimal systems, Internat. J. Math. 6 (1995), 569-579. Zbl0879.54046
  14. [14] D. Handelman, Positive matrices and dimension groups affiliated to topological Markov chains, in: Proc. Sympos. Pure Math. 38, part I, Amer. Math. Soc., 1982, 191-194. Zbl0513.46048
  15. [15] T. Harju and M. Linna, On the periodicity of morphisms on free monoids, RAIRO Inform. Théor. Appl. 20 (1986), 47-54. Zbl0608.68065
  16. [16] R. H. Herman, I. F. Putnam and C. F. Skau, Ordered Bratteli diagrams, dimension groups, and topological dynamics, Internat. J. Math. 3 (1992), 827-864. Zbl0786.46053
  17. [17] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Grundlehren Math. Wiss. 115, Springer, Berlin, 1963. 
  18. [18] B. Mossé, Puissances de mots et reconnaissabilité des points fixes d'une substitution, Theoret. Comput. Sci. 99 (1992), 327-334. Zbl0763.68049
  19. [19] --, Reconnaissabilité des substitutions et complexité des suites automatiques, Bull. Soc. Math. France 124 (1996), 101-118. 
  20. [20] N. Ormes, Strong orbit realization for minimal homeomorphisms, J. Anal. Math. 71 (1997), 103-133. Zbl0881.28013
  21. [21] W. Parry and S. Tuncel, Classification Problems in Ergodic Theory, London Math. Soc. Lecture Note Ser. 67, Cambridge Univ. Press, Cambridge, 1982. Zbl0487.28014
  22. [22] I. F. Putnam, K. Schmidt and C. Skau, C*-algebras associated with Denjoy homeomorphisms of the circle, J. Operator Theory 16 (1986), 99-126. Zbl0611.46067
  23. [23] M. Queffélec, Substitution Dynamical Systems, Lecture Notes in Math. 1294, Springer, (1987). 
  24. [24] F. Sugisaki, The relationship between entropy and strong orbit equivalence for the minimal homeomorphisms (I), Internat. J. Math., to appear. Zbl1055.37007
  25. [25] A. M. Vershik, A theorem on the Markov periodical approximation in ergodic theory, J. Soviet Math. 28 (1985), 667-674. Zbl0559.47006
  26. [26] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, 1982. 
  27. [27] S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67 (1984), 95-107. Zbl0584.28007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.