Mixing properties of nearly maximal entropy measures for shifts of finite type
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 1, page 43-50
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Burton and J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type, Ergodic Theory Dynam. Systems 14 (1994), 213-235. Zbl0807.58023
- [2] R. Burton and J. E. Steif, Some -d symbolic dynamical systems: entropy and mixing, in: Ergodic Theory of Actions (Warwick, 1993-1994), London Math. Soc. Lecture Note Ser. 228, Cambridge Univ. Press, Cambridge, 1996, 297-305. Zbl0852.58029
- [3] A. Fieldsteel and N. A. Friedman, Restricted orbit changes of ergodic -actions to achieve mixing and completely positive entropy, Ergodic Theory Dynam. Systems 6 (1986), 505-528. Zbl0614.28016
- [4] H R. J. Hasfura-Buenaga, The equivalence theorem for -actions of positive entropy, ibid. 12 (1992), 725-741. Zbl0813.28007
- [5] A. del Junco and D. J. Rudolph, Kakutani equivalence of ergodic actions, ibid. 4 (1984), 89-104. Zbl0552.28021
- [6] F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A 287 (1978), 561-563. Zbl0387.60084
- [7] M. Misiurewicz, A short proof of the variational principle for a action on a compact space, Astérisque 40 (1976), 147-157.
- [8] S. Mozes, A zero entropy, mixing of all orders tiling system, in: Symbolic Dynamics and its Applications (New Haven, CT, 1991), Amer. Math. Soc., Providence, RI, 1992, 319-325.
- [9] E. A. Robinson, Jr. and A. A. Şahin, On the absence of invariant measures with locally maximal entropy for a class of shifts of finite type, Proc. Amer. Math. Soc., to appear.
- [10] E. A. Robinson, Modeling ergodic measure preserving actions on shifts of finite type, preprint, 1998.
- [11] T. Ward, Automorphisms of -subshifts of finite type, Indag. Math. (N.S.) 5 (1994), 495-504. Zbl0823.28007