Large deviations for generic stationary processes

Emmanuel Lesigne; Dalibor Volný

Colloquium Mathematicae (2000)

  • Volume: 84/85, Issue: 1, page 75-82
  • ISSN: 0010-1354

Abstract

top
Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.

How to cite

top

Lesigne, Emmanuel, and Volný, Dalibor. "Large deviations for generic stationary processes." Colloquium Mathematicae 84/85.1 (2000): 75-82. <http://eudml.org/doc/210810>.

@article{Lesigne2000,
abstract = {Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.},
author = {Lesigne, Emmanuel, Volný, Dalibor},
journal = {Colloquium Mathematicae},
keywords = {ergodic theorem; probability space; measure-preserving ergodic and aperiodic transformation; speed of convergence},
language = {eng},
number = {1},
pages = {75-82},
title = {Large deviations for generic stationary processes},
url = {http://eudml.org/doc/210810},
volume = {84/85},
year = {2000},
}

TY - JOUR
AU - Lesigne, Emmanuel
AU - Volný, Dalibor
TI - Large deviations for generic stationary processes
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 1
SP - 75
EP - 82
AB - Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.
LA - eng
KW - ergodic theorem; probability space; measure-preserving ergodic and aperiodic transformation; speed of convergence
UR - http://eudml.org/doc/210810
ER -

References

top
  1. [Bu-Den] Burton, R. and Denker, M. On the central limit theorem for dynamical systems, Trans. Amer. Math. Soc. 302 (1987), 715-726. Zbl0628.60030
  2. [C] Cramér, H. Sur un nouveau théorème-limite de la théorie des probabilités, in: Actualités Sci. Indust. 736, Hermann, Paris, 1938, 5-23. Zbl64.0529.01
  3. s Dembo, A. and Zeitouni, O. Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993 (or: Appl. Math. 38, Springer, 1998). Zbl0793.60030
  4. s del Junco, A. and Rosenblatt, J. Counterexamples in ergodic theory and in number theory, Math. Ann. 245 (1979), 185-197. Zbl0398.28021
  5. [K] Katok, A. Constructions in ergodic theory, unpublished manuscript. Zbl1030.37001
  6. [Kr] Krengel, U. On the speed of convergence in the ergodic theorem, Monatsh. Math. 86 (1978), 3-6. Zbl0352.28008
  7. [L1] Lacey, M. On weak convergence in dynamical systems to self-similar processes with spectral representation, Trans. Amer. Math. Soc. 328 (1991), 767-778. Zbl0741.60026
  8. [L2] Lacey, M. On central limit theorems, modulus of continuity and Diophantine type for irrational rotations, J. Anal. Math. 61 (1993), 47-59. 
  9. [Pa] Parry, W. Topics in Ergodic Theory, Cambridge Univ. Press, 1981. Zbl0449.28016
  10. [Pe] Petrov, V. V. Limit Theorems of Probability Theory, Oxford Stud. Probab. 4, Oxford Sci. Publ., Oxford Univ. Press, 1995. 
  11. [V1] Volný, D. On limit theorems and category for dynamical systems, Yokohama Math. J. 38 (1990), 29-35. Zbl0735.60025
  12. [V2] Volný, D, Invariance principles and Gaussian approximation for strictly stationary processes, Trans. Amer. Math. Soc. 351 (1999), 3351-3371. Zbl0939.37006
  13. [V-W] Volný, D. and Weiss, B. Coboundaries in L 0 , in preparation. Zbl1055.60018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.