# Large deviations for generic stationary processes

Emmanuel Lesigne; Dalibor Volný

Colloquium Mathematicae (2000)

- Volume: 84/85, Issue: 1, page 75-82
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topLesigne, Emmanuel, and Volný, Dalibor. "Large deviations for generic stationary processes." Colloquium Mathematicae 84/85.1 (2000): 75-82. <http://eudml.org/doc/210810>.

@article{Lesigne2000,

abstract = {Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.},

author = {Lesigne, Emmanuel, Volný, Dalibor},

journal = {Colloquium Mathematicae},

keywords = {ergodic theorem; probability space; measure-preserving ergodic and aperiodic transformation; speed of convergence},

language = {eng},

number = {1},

pages = {75-82},

title = {Large deviations for generic stationary processes},

url = {http://eudml.org/doc/210810},

volume = {84/85},

year = {2000},

}

TY - JOUR

AU - Lesigne, Emmanuel

AU - Volný, Dalibor

TI - Large deviations for generic stationary processes

JO - Colloquium Mathematicae

PY - 2000

VL - 84/85

IS - 1

SP - 75

EP - 82

AB - Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.

LA - eng

KW - ergodic theorem; probability space; measure-preserving ergodic and aperiodic transformation; speed of convergence

UR - http://eudml.org/doc/210810

ER -

## References

top- [Bu-Den] Burton, R. and Denker, M. On the central limit theorem for dynamical systems, Trans. Amer. Math. Soc. 302 (1987), 715-726. Zbl0628.60030
- [C] Cramér, H. Sur un nouveau théorème-limite de la théorie des probabilités, in: Actualités Sci. Indust. 736, Hermann, Paris, 1938, 5-23. Zbl64.0529.01
- s Dembo, A. and Zeitouni, O. Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993 (or: Appl. Math. 38, Springer, 1998). Zbl0793.60030
- s del Junco, A. and Rosenblatt, J. Counterexamples in ergodic theory and in number theory, Math. Ann. 245 (1979), 185-197. Zbl0398.28021
- [K] Katok, A. Constructions in ergodic theory, unpublished manuscript. Zbl1030.37001
- [Kr] Krengel, U. On the speed of convergence in the ergodic theorem, Monatsh. Math. 86 (1978), 3-6. Zbl0352.28008
- [L1] Lacey, M. On weak convergence in dynamical systems to self-similar processes with spectral representation, Trans. Amer. Math. Soc. 328 (1991), 767-778. Zbl0741.60026
- [L2] Lacey, M. On central limit theorems, modulus of continuity and Diophantine type for irrational rotations, J. Anal. Math. 61 (1993), 47-59.
- [Pa] Parry, W. Topics in Ergodic Theory, Cambridge Univ. Press, 1981. Zbl0449.28016
- [Pe] Petrov, V. V. Limit Theorems of Probability Theory, Oxford Stud. Probab. 4, Oxford Sci. Publ., Oxford Univ. Press, 1995.
- [V1] Volný, D. On limit theorems and category for dynamical systems, Yokohama Math. J. 38 (1990), 29-35. Zbl0735.60025
- [V2] Volný, D, Invariance principles and Gaussian approximation for strictly stationary processes, Trans. Amer. Math. Soc. 351 (1999), 3351-3371. Zbl0939.37006
- [V-W] Volný, D. and Weiss, B. Coboundaries in ${L}_{0}^{\infty}$, in preparation. Zbl1055.60018

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.