Coboundaries in

Dalibor Volný; Benjamin Weiss

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 6, page 771-778
  • ISSN: 0246-0203

How to cite

top

Volný, Dalibor, and Weiss, Benjamin. "Coboundaries in ${L}_{0}^{\infty }$." Annales de l'I.H.P. Probabilités et statistiques 40.6 (2004): 771-778. <http://eudml.org/doc/77833>.

@article{Volný2004,
author = {Volný, Dalibor, Weiss, Benjamin},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {coboundary; probabilities of large deviations},
language = {eng},
number = {6},
pages = {771-778},
publisher = {Elsevier},
title = {Coboundaries in $\{L\}_\{0\}^\{\infty \}$},
url = {http://eudml.org/doc/77833},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Volný, Dalibor
AU - Weiss, Benjamin
TI - Coboundaries in ${L}_{0}^{\infty }$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 6
SP - 771
EP - 778
LA - eng
KW - coboundary; probabilities of large deviations
UR - http://eudml.org/doc/77833
ER -

References

top
  1. [1] A. Alpern, Generic properties of measure preserving homeomorphisms, in: Ergodic Theory, Lecture Notes in Mathematics, vol. 729, 1979, pp. 16-27. Zbl0439.28012MR550406
  2. [2] A. Alpern, Return times and conjugates of an antiperiodic transformation, Ergodic Theory Dynam. Syst.1 (1981) 135-143. Zbl0496.28014MR661814
  3. [3] A. Alpern, V.S. Prasad, Typical Dynamics of Volume Preserving Homeomorphisms, Cambridge Univ. Press, Cambridge, 2000. Zbl0970.37001MR1826331
  4. [4] K. Azuma, Weighted sums of certain dependent random variables, Tôhoku Math. J.19 (1967) 357-367. Zbl0178.21103MR221571
  5. [5] S.J. Eigen, V.S. Prasad, Multiple Rokhlin Tower Theorem: A simple proof, New York J. Math.3A (1997) 11-14. Zbl0894.28009MR1604573
  6. [6] A. Katok, Constructions in ergodic theory, in preparation. 
  7. [7] A.V. Kočergin, On the homology of functions over dynamical systems, Soviet Math. Dokl.17 (1976) 1637-1641, (in Russian). Zbl0414.28024MR430211
  8. [8] A.V. Kočergin, On the homology of functions over dynamical systems, Dokl. Akad. Nauk SSSR231 (1976), (in English). Zbl0414.28024MR430211
  9. [9] E. Lesigne, D. Volný, Large deviations for generic stationary processes, Coll. Math.84/85 (2000) 75-82. Zbl0973.28014MR1778841
  10. [10] W. Parry, Topics in Ergodic Theory, Cambridge Tracts in Mathematics, vol. 75, Cambridge Univ. Press, Cambridge, 1981. Zbl0449.28016MR614142

NotesEmbed ?

top

You must be logged in to post comments.