Isomorphic random Bernoulli shifts
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 2, page 327-344
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [Bog93] T. Bogenschütz, Equilibrium states for random dynamical systems, PhD thesis, Universität Bremen, 1993. Zbl0833.58023
- [BG92] T. Bogenschütz and V. M. Gundlach, Symbolic dynamics for expanding random dynamical systems, Random Comput. Dynamics 1 (1992), 219-227. Zbl0790.58015
- [Con97] N. D. Cong, Topological Dynamics of Random Dynamical Systems, Clarendon Press, Oxford, 1997.
- [CFS82] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory, Grundlehren Math. Wiss. 245, Springer, New York, 1982.
- [Gun99] V. M. Gundlach, Random shifts and matrix products, Habilitationsschrift, 1999.
- [GK99] V. M. Gundlach and Y. Kifer, Random hyperbolic systems, in: H. Crauel and V. M. Gundlach (eds.), Stochastic Dynamics, Berlin, Springer, 1999, 117-145. Zbl0933.37056
- [Kie84] J. Kieffer, A simple development of the Thouvenot relative isomorphism theory, Ann. Probab. 12 (1984), 204-211. Zbl0551.28023
- [Kif86] Y. Kifer, Ergodic Theory of Random Transformations, Birkhäuser, Boston, 1986.
- [Kif96] Y. Kifer, Fractal dimensions and random transformations, Trans. Amer. Math. Soc. 348 (1996), 2003-2038. Zbl0874.28009
- [Lin77] D. A. Lind, The structure of skew products with ergodic group automorphisms, Israel J. Math. 28 (1977), 205-248. Zbl0365.28015
- [Orn70] D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Adv. Math. 4 (1970), 337-352. Zbl0197.33502
- [Pet83] K. Petersen, Ergodic Theory, Cambridge Univ. Press, Cambridge, 1983.
- [Rah78] M. Rahe, Relatively finitely determined implies relatively very weak Bernoulli, Canad. J. Math. 30 (1978), 531-548. Zbl0394.28008
- [Shi77] P. Shields, Weak and very weak Bernoulli partitions, Monatsh. Math. 84 (1977), 133-142. Zbl0388.28017
- [Th75a] J.-P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli, Israel J. Math. 21 (1975), 177-207. Zbl0329.28008
- [Th75b] J.-P. Thouvenot, Remarques sur les systèmes dynamiques donnés avec plusieurs facteurs, ibid., 215-232. Zbl0331.28012